The wide use of rice is one of the factors that favors its implication in food borne diseases, and one of the most important pathogens associated to it is Bacillus cereus. The aim of this work was to evaluate the microbiological quality of 50 samples of white cooked rice sold in restaurants at the Metropolitan Area of San José, Costa Rica, including the determination of the total aerobic plate count, the Most Probable Number of total and fecal coliforms and Escherichia coli. MPN of Bacillus cereus and the detection of nheA, nheB and nHeC genes, associated to its toxicity, was also performed. Procedures described in the Compendium of Methods for the Microbiological Examination of Foods were followed for the bacteriological analysis, multiplex PCR was used for the detection of genes following the methodology described by Hansen et al, 2001. 46% of the samples analysed were positive for total coliforms, 34% for fecal coliforms, 16% for E. coli and 10% for B. cereus, being 8% toxigenic. These facts suggest that white cooked rice may represent a risk for Pubic Health and that improvements shall be performed in order to offer a safe and high quality product to consumers.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bacillus cereus
12
cereus detection
8
rice sold
8
metropolitan area
8
area san
8
san josé
8
josé costa
8
white cooked
8
cooked rice
8
fecal coliforms
8

Similar Publications

Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation.

J Environ Manage

January 2025

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:

Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.

View Article and Find Full Text PDF

The extract of the stems of R. Br. yielded three new terpenes () including two diterpenes and one triterpene, named euryachins C-E, as well as three known diterpenes ().

View Article and Find Full Text PDF

Research on natural antioxidants derived from plants has surged due to their potential health benefits. In the current study, the chemical composition, enzyme inhibitory activity, and antimicrobial effects of the Elaeagnus angustifolia L. plant, including leaves, flowers, and flower stalks extracts, were analyzed.

View Article and Find Full Text PDF

Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.

Mol Cell

December 2024

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA. Electronic address:

Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD).

View Article and Find Full Text PDF

Purpose: Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of in CSOM remains poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!