A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. | LitMetric

Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria.

Springerplus

Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058 China.

Published: March 2014

The screening of pollutant-degrading bacteria are limited due to most of bacteria in the natural environment cannot be cultivated. For the purpose of resuscitating and stimulating "viable but non-culturable" (VBNC) or uncultured bacteria, Micrococcus luteus proteins are more convenient and cost-effective than purified resuscitation-promoting factor (Rpf) protein. In this study, medium composition and culture conditions were optimized by using statistical experimental design and analysis to enhance protein production by M. luteus. The most important variables influencing protein production were determined using the Plackett-Burman design (PBD) and then central composite design (CCD) was adopted to optimize medium composition and culture conditions to achieve maximum protein yield. Results showed that the maximum protein yield of 25.13 mg/L (vs. 25.66 mg/L predicted) was obtained when the mineral solution, Lithium L-lactate, initial pH and incubation time were set at 1.5 ml/L, 8.75 g/L, 7.5 and 48 h, respectively. The predicated values calculated with the model were very close to the experimental values. Protein production was obviously increased with optimization fitting well with the observed fluorescence intensity. These results verified the feasibility and accuracy of this optimization strategy. This study provides promising information for exploring highly desirable pollutant-degrading microorganisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945202PMC
http://dx.doi.org/10.1186/2193-1801-3-117DOI Listing

Publication Analysis

Top Keywords

protein production
16
micrococcus luteus
8
uncultured bacteria
8
medium composition
8
composition culture
8
culture conditions
8
maximum protein
8
protein yield
8
protein
6
optimization protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!