Beetle luciferases are thought to have evolved from fatty acyl-CoA synthetases present in all insects. Both classes of enzymes activate fatty acids with ATP to form acyl-adenylate intermediates, but only luciferases can activate and oxidize d-luciferin to emit light. Here we show that the Drosophila fatty acyl-CoA synthetase CG6178, which cannot use d-luciferin as a substrate, is able to catalyze light emission from the synthetic luciferin analog CycLuc2. Bioluminescence can be detected from the purified protein, live Drosophila Schneider 2 cells, and from mammalian cells transfected with CG6178. Thus, the nonluminescent fruit fly possesses an inherent capacity for bioluminescence that is only revealed upon treatment with a xenobiotic molecule. This result expands the scope of bioluminescence and demonstrates that the introduction of a new substrate can unmask latent enzymatic activity that differs significantly from an enzyme's normal function without requiring mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970535 | PMC |
http://dx.doi.org/10.1073/pnas.1319300111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!