Sequence-specific alterations of epitope production by HIV protease inhibitors.

J Immunol

Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139.

Published: April 2014

AI Article Synopsis

Article Abstract

Ag processing by intracellular proteases and peptidases and epitope presentation are critical for recognition of pathogen-infected cells by CD8+ T lymphocytes. First-generation HIV protease inhibitors (PIs) alter proteasome activity, but the effect of first- or second-generation PIs on other cellular peptidases, the underlying mechanism, and impact on Ag processing and epitope presentation to CTL are still unknown. In this article, we demonstrate that several HIV PIs altered not only proteasome but also aminopeptidase activities in PBMCs. Using an in vitro degradation assay involving PBMC cytosolic extracts, we showed that PIs altered the degradation patterns of oligopeptides and peptide production in a sequence-specific manner, enhancing the cleavage of certain residues and reducing others. PIs affected the sensitivity of peptides to intracellular degradation, and altered the kinetics and amount of HIV epitopes produced intracellularly. Accordingly, the endogenous degradation of incoming virions in the presence of PIs led to variations in CTL-mediated killing of HIV-infected cells. By altering host protease activities and the degradation patterns of proteins in a sequence-specific manner, HIV PIs may diversify peptides available for MHC class I presentation to CTL, alter the patterns of CTL responses, and provide a complementary approach to current therapies for the CTL-mediated clearance of abnormal cells in infection, cancer, or other immune disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983674PMC
http://dx.doi.org/10.4049/jimmunol.1302805DOI Listing

Publication Analysis

Top Keywords

hiv protease
8
protease inhibitors
8
epitope presentation
8
presentation ctl
8
hiv pis
8
pis altered
8
degradation patterns
8
sequence-specific manner
8
pis
7
hiv
5

Similar Publications

Highly active antiretroviral therapy has led to a significant increase in the life expectancy of people living with HIV. The trade-off is that HIV-infected patients often suffer from comorbidities that require additional treatment, increasing the risk of Drug-Drug Interactions (DDIs), the clinical relevance of which has often not been determined during registration trials of the drugs involved. Therefore, it is important to identify potential clinically relevant DDIs in order to establish the most appropriate therapeutic approaches.

View Article and Find Full Text PDF

The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion.

View Article and Find Full Text PDF

Introduction: The specificity of HIV-1 DNA genotypic resistance tests (GRTs) is hampered by the detection of the APOBEC-context drug resistance mutations (AC DRMs), usually harboured by replication-incompetent proviruses. We sought factors associated with defective sequences in the HIV-1 pol region. In addition, AC DRMs and their link with defective sequences were investigated.

View Article and Find Full Text PDF

Potent HIV‑1 protease inhibitors containing oxabicyclo octanol-derived P2-ligands: Design, synthesis, and X‑ray structural studies of inhibitor-HIV-1 protease complexes.

Bioorg Med Chem Lett

January 2025

Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan; Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

We describe here the design, synthesis, and X-ray structural studies of a new class of HIV-1 protease inhibitors containing 8-oxabicyclo[3.2.1]octanol-derived P2 ligands.

View Article and Find Full Text PDF

Predicted environmental concentration (PEC), environmental risk assessment (ERA) and prioritization of antiretroviral drugs (ARVs) in seawater from Guarujá (Brazilian coastal zone).

Mar Environ Res

January 2025

Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil. Electronic address:

The antiretroviral therapy program's success in managing the human immunodeficiency virus (HIV) has inadvertently led to the release of antiretrovirals (ARVs) into worldwide aquatic ecosystems. However, few studies investigated the risks of ARV loadings that flow continuously to the marine waters of South America (such as Brazil). Against this backdrop, the aims of this study were: (i) to estimate the Predicted Environmental Concentration (PEC) of thirteen ARVs worldwide used in HIV treatment, and which are frequently disposed of in the marine aquatic ecosystems of Guarujá, São Paulo coastline, Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!