A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects. | LitMetric

Objective: Endocannabinoid system (ECS) activation promotes obesity-associated metabolic disease. Increased dietary fat intake increases blood endocannabinoids and alters adipose and skeletal muscle ECS gene expression in human.

Methods: Two weeks isocaloric low- (LFD) and high-fat diets (HFD) in obese (n = 12) and normal-weight (n = 17) subjects in a randomized cross-over study were compared. Blood endocannabinoids were measured in the fasting condition and after food intake using mass spectrometry. Adipose and skeletal muscle gene expression was determined using real-time RT-PCR.

Results: Baseline fasting plasma endocannabinoids were similar with both diets. Anandamide decreased similarly with high- or low-fat test meals in both groups. Baseline arachidonoylglycerol plasma concentrations were similar between groups and diets, and unresponsive to eating. In subcutaneous adipose tissue, DAGL-α mRNA was upregulated and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) mRNAs were down-regulated in obese subjects, but the diets had no influence. In contrast, the HFD produced pronounced reductions in skeletal muscle CB1-R and MAGL mRNA expression, whereas obesity did not affect muscular gene expression.

Conclusions: Weight-neutral changes in dietary fat intake cannot explain excessive endocannabinoid availability in human obesity. Obesity and dietary fat intake affect ECS gene expression in a tissue-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.20728DOI Listing

Publication Analysis

Top Keywords

dietary fat
16
fat intake
16
skeletal muscle
12
gene expression
12
endocannabinoid system
8
obese subjects
8
blood endocannabinoids
8
adipose skeletal
8
ecs gene
8
intake
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!