Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Blebs and F-actin-driven pseudopods are alternative ways of extending the leading edge of migrating cells. We show that Dictyostelium cells switch from using predominantly pseudopods to blebs when migrating under agarose overlays of increasing stiffness. Blebs expand faster than pseudopods leaving behind F-actin scars, but are less persistent. Blebbing cells are strongly chemotactic to cyclic-AMP, producing nearly all of their blebs up-gradient. When cells re-orientate to a needle releasing cyclic-AMP, they stereotypically produce first microspikes, then blebs and pseudopods only later. Genetically, blebbing requires myosin-II and increases when actin polymerization or cortical function is impaired. Cyclic-AMP induces transient blebbing independently of much of the known chemotactic signal transduction machinery, but involving PI3-kinase and downstream PH domain proteins, CRAC and PhdA. Impairment of this PI3-kinase pathway results in slow movement under agarose and cells that produce few blebs, though actin polymerization appears unaffected. We propose that mechanical resistance induces bleb-driven movement in Dictyostelium, which is chemotactic and controlled through PI3-kinase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998804 | PMC |
http://dx.doi.org/10.1083/jcb.201306147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!