Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007465PMC
http://dx.doi.org/10.1074/jbc.M113.545590DOI Listing

Publication Analysis

Top Keywords

nitration inactivation
8
trypanosoma cruzi
8
dismutases fe-sods
8
tyr35 radical
8
fe-sodb
8
cys83 fe-sodb
8
intramolecular electron
8
electron transfer
8
104 m-1
8
m-1 s-1
8

Similar Publications

Chronic coronary syndrome (CCS) is a long-term manifestation of coronary artery disease, marked by stable but recurring chest pain and myocardial ischemia due to the gradual buildup of atherosclerotic plaques in the coronary arteries. It is a metabolic disorder of coronary arteries characterized by oxidative stress, endothelial dysfunction, inflammation, and hyperlipidemia. The imbalance in oxidative-antioxidative status contributes to stable ischemic heart disease.

View Article and Find Full Text PDF

Morphine is an important pain reliever employed in pain management, its extended utilize is hindered by the onset of analgesic tolerance and oxidative stress. Long-term morphine administration causes elevated production of reactive oxygen species (ROS), disrupting mitochondrial function and inducing oxidation. Sirtuin 3 (SIRT3), a mitochondrial protein, is essential in modulating ROS levels by regulating mitochondrial antioxidant enzymes as manganese superoxide dismutase (MnSOD).

View Article and Find Full Text PDF

Shining a Light on Inflammation as a Critical Modulator of Drug Metabolism.

Drug Metab Dispos

September 2024

Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia

Since his graduate studies on alcohol induction of a novel cytochrome P450 (P450) enzyme, through his postdoctoral work on hormonal regulation of sexually differentiated cytochrome P450s (P450s), the author has maintained an interest in the regulation of drug metabolizing enzymes. This article is a recounting of his scientific career and focuses on his laboratory's work on inflammatory regulation of P450 enzymes that formed the basis for the Bernard B. Brodie Award.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O ) to molecular oxygen (O) and hydrogen peroxide (HO) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD.

View Article and Find Full Text PDF

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O ) to molecular oxygen (O ) and hydrogen peroxide (H O ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!