Cashiers are potentially exposed to intermediate frequency (IF) magnetic fields at their workplaces because of the electronic article surveillance (EAS) systems used in stores to protect merchandise against theft. This study aimed at investigating occupational exposure of cashiers to IF magnetic fields in Finnish stores. Exposure to extremely low frequency (ELF) magnetic fields was also evaluated because cashiers work near various devices operating with 50 Hz electric power. The peak magnetic flux density was measured for IF magnetic fields, and was found to vary from 0.2 to 4 µT at the cashier's seat. ELF magnetic fields from 0.03 to 4.5 µT were found at the cashier's seat. These values are much lower than exposure limits. However, according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) occupational reference levels for IF magnetic fields (141 µT for the peak field) were exceeded in some cases (maximum 189 µT) for short periods of time when cashiers walked through the EAS gates. As the ICNIRP reference levels do not define any minimum time for exposure, additional investigations are recommended to determine compliance with basic restrictions. Even if the basic restrictions are not exceeded, persons working near EAS devices represent an exceptional group of workers with respect to exposure to electromagnetic fields. This group could serve as a basis for epidemiological studies addressing possible health effects of IF magnetic fields. Compliance with the reference levels for IF fields was evaluated using both broadband measurement of peak fields and the ICNIRP summation rule for multiple frequencies. The latter was generally more conservative, and the difference between the two methods was large (>10-fold) for EAS systems using a 58 kHz signal with complex waveform. This indicates that the ICNIRP multiple frequency rule can be unnecessarily conservative when measuring complex waveforms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.21850DOI Listing

Publication Analysis

Top Keywords

magnetic fields
32
reference levels
12
fields
11
magnetic
9
occupational exposure
8
intermediate frequency
8
extremely low
8
low frequency
8
frequency magnetic
8
electronic article
8

Similar Publications

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 seconds after initial model assembly using a regular workstation.

View Article and Find Full Text PDF
Article Synopsis
  • Electric quadrupole traps effectively levitate charged objects, from protons to small particles, influencing their rotational behavior when charge distribution varies.
  • Experiments reveal a shift in motion for microparticles, transitioning from librational to synchronized rotation with the trap drive due to torque effects from the electric quadrupole.
  • This technique showcases versatility by spinning various particles like silicon microrods and microdiamonds, with the latter enabling detailed motion analysis through embedded nitrogen vacancy centers, promising advances in levitated quantum nanomechanics.
View Article and Find Full Text PDF
Article Synopsis
  • Dynamic nuclear polarization (DNP) and quantum technologies utilize the spin transfer in electron-nuclear quantum systems, but larger couplings like hyperfine interactions can hinder these processes.
  • The Schrieffer-Wolff transformation is applied to analyze a system of two electrons and two nuclei, focusing on polarization-transfer methods, including an energy-conserving electron-nuclear four-spin flip-flop.
  • The study connects magnetic resonance and quantum information, demonstrating a model where all nuclear spins can aid in hyperpolarization without being impeded by a spin diffusion barrier in DNP.
View Article and Find Full Text PDF

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Background: Intracranial atherosclerosis is a common age-related neuropathology that has been linked to cognitive decline and dementia and often mixed with Alzheimer's and other neuropathologies. But the association of atherosclerosis with brain morphometric abnormalities has not been explored. This work combined Deformation-based morphometry on ex-vivo MRI with detailed neuropathological examination in a large number of community-based older adults to investigate the association.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!