Human stem cell-derived cardiomyocytes hold promise for heart repair, disease modeling, drug screening, and for studies of developmental biology. All of these applications can be improved by assessing the contractility of cardiomyocytes at the single cell level. We have developed an in vitro platform for assessing the contractile performance of stem cell-derived cardiomyocytes that is compatible with other common endpoints such as microscopy and molecular biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded onto elastomeric micropost arrays in order to characterize the contractile force, velocity, and power produced by these cells. We assessed contractile function by tracking the deflection of microposts beneath an individual hiPSC-CM with optical microscopy. Immunofluorescent staining of these cells was employed to assess their spread area, nucleation, and sarcomeric structure on the microposts. Following seeding of hiPSC-CMs onto microposts coated with fibronectin, laminin, and collagen IV, we found that hiPSC-CMs on laminin coatings demonstrated higher attachment, spread area, and contractile velocity than those seeded on fibronectin or collagen IV coatings. Under optimized conditions, hiPSC-CMs spread to an area of approximately 420 μm2, generated systolic forces of approximately 15 nN/cell, showed contraction and relaxation rates of 1.74 μm/s and 1.46 μm/s, respectively, and had a peak contraction power of 29 fW. Thus, elastomeric micropost arrays can be used to study the contractile strength and kinetics of hiPSC-CMs. This system should facilitate studies of hiPSC-CM maturation, disease modeling, and drug screens as well as fundamental studies of human cardiac contraction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158804PMC
http://dx.doi.org/10.1115/1.4027145DOI Listing

Publication Analysis

Top Keywords

stem cell-derived
16
cell-derived cardiomyocytes
16
spread area
12
human induced
8
induced pluripotent
8
pluripotent stem
8
disease modeling
8
modeling drug
8
elastomeric micropost
8
micropost arrays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!