Purpose: The right ventricle (RV) has a high capacity to adapt to pressure or volume overload before failing. However, the mechanisms of RV adaptation, in particular RV energetics, in patients with pulmonary hypertension (PH) are still not well understood. We aimed to evaluate RV energetics including RV oxidative metabolism, power and efficiency to adapt to increasing pressure overload in patients with PH using (11)C-acetate PET.

Methods: In this prospective study, 27 patients with WHO functional class II/III PH (mean pulmonary arterial pressure 39.8 ± 13.5 mmHg) and 9 healthy individuals underwent (11)C-acetate PET. (11)C-acetate PET was used to simultaneously measure oxidative metabolism (k mono) for the left ventricle (LV) and RV. LV and RV efficiency were also calculated.

Results: The RV ejection fraction in PH patients was lower than in controls (p = 0.0054). There was no statistically significant difference in LV k mono (p = 0.09). In contrast, PH patients showed higher RV k mono than did controls (0.050 ± 0.009 min(-1) vs. 0.030 ± 0.006 min(-1), p < 0.0001). PH patients exhibited significantly increased RV power (p < 0.001) and hence increased RV efficiency compared to controls (0.40 ± 0.14 vs. 0.017 ± 0.12 mmHg·mL·min/g, p = 0.001).

Conclusion: The RV oxidative metabolic rate was increased in patients with PH. Patients with WHO functional class II/III PH also had increased RV power and efficiency. These findings may indicate a myocardial energetics adaptation response to increasing pulmonary arterial pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-014-2736-4DOI Listing

Publication Analysis

Top Keywords

patients pulmonary
8
pulmonary hypertension
8
oxidative metabolism
8
11c-acetate pet
8
patients
6
attenuated ventricular
4
ventricular energetics
4
energetics evaluated
4
evaluated ¹¹c-acetate
4
¹¹c-acetate pet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!