Kindlins are a family of integrin adapter and cell-matrix adhesion proteins causally linked to human genetic disorders. Kindlin-2 is a ubiquitously expressed protein with manifold functions and interactions. The contribution of kindlin-2 to integrin-based cell-matrix adhesions has been extensively explored, while other integrin-independent roles emerge. Because of the early involvement of kindlin-2 in development, no viable animal models with its constitutional knockout are available to study its physiological functions in adult skin. Here, we uncovered a critical physiological role of kindlin-2 in the epidermis by using a skin-equivalent model with shRNA-mediated knock-down of kindlin-2 in keratinocytes. Kindlin-2-deficient keratinocytes built stratified epidermal layers, but displayed impaired dermal-epidermal and intra-epidermal adhesion and barrier function. Co-immunoprecipitation studies demonstrated that kindlin-2 interacts with both integrin- and cadherin-based adhesions. In kindlin-2-deficient keratinocytes, reduced cell-cell adhesion was associated with abnormal cytoplasmic distribution of adherens junctions and desmosomal proteins, which was dependent on RhoA activation. Direct activation of RhoA with recombinant bacterial cytotoxic necrotizing factor y (CNFy) reverted the abnormal phenotype and barrier function of kindlin-2-deficient keratinocytes and skin equivalents. These findings have physiological and pathological significance, since kindlin-2 expression modulates the phenotype in Kindler syndrome, a skin fragility disorder caused by kindlin-1 deficiency. Our results suggest that pharmacological regulation of RhoGTPase activity may represent a therapeutic option for skin fragility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.4350DOI Listing

Publication Analysis

Top Keywords

kindlin-2-deficient keratinocytes
16
rhoa activation
8
cell-cell adhesion
8
barrier function
8
skin fragility
8
kindlin-2
7
keratinocytes
5
activation cnfy
4
cnfy restores
4
restores cell-cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!