AI Article Synopsis

  • Molecular iodine can create halogen bonding complexes with amantadine (AMD) and amantadine hydrochloride (AMD-HCl) in chloroform, with associated charge transfer bands detected at 259 nm and 253 nm.
  • The interaction was studied using techniques such as UV absorption, Raman analysis, and X-ray crystallography, discovering a novel bonding model termed N(+)···N(lep).
  • The resulting halogen bonding complexes were employed to develop a new, more sensitive spectrophotometric method for detecting AMD/AMD-HCl, achieving lower limits of detection and quantification compared to traditional methods, especially showing significantly higher sensitivity for AMD.

Article Abstract

It is proposed that molecular iodine as a donor could form halogen bonding complexes with amantadine (AMD) and amantadine hydrochloride (AMD-HCl) in chloroform and the resultant charge transfer bands (CT band) would be located at 259 and 253 nm, respectively. The halogen bonding interaction was explored by UV absorption, Raman and X-ray crystallography, and a new bonding model named N(+)···N(lep) bond in crystal was observed. The halogen bonding complexes were utilized in the development of simple and accurate spectrophotometry for the analysis of AMD/AMD-HCl. Compared with the traditional method based on the absorption of I3(-) at 290 and 365 nm, the new proposed spectrometry based on the CT band of halogen bonding complex was more sensitive and selective for the detection of AMD/AMD-HCl. Linear relationships with good correlation coefficients (>0.9994) were obtained between the absorbance and the AMD/AMD-HCl concentration in the range of 10-180 μg mL(-1) for AMD-HCl and 0.2-13 μg mL(-1) for AMD. The limit of detection (LOD) was 2.23 μg mL(-1) and limit of quantification (LOQ) was 7.45 μg mL(-1) for AMD-HCl. And because of the stronger bond constant between AMD and iodine than AMD-HCl, the method is more sensitive for AMD; the LOD was 0.02 μg mL(-1) and LOQ was 0.08 μg mL(-1) which was 100 times lower than that of AMD-HCl.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.30.365DOI Listing

Publication Analysis

Top Keywords

μg ml-1
24
halogen bonding
16
amantadine hydrochloride
8
bonding complexes
8
ml-1 amd-hcl
8
μg
6
ml-1
6
halogen
5
bonding
5
amd-hcl
5

Similar Publications

Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening.

J Mater Chem B

March 2023

Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.

In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of HO. L-Ascorbic acid-2--α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs.

View Article and Find Full Text PDF

A fluorometric assay for α-glucosidase activity based on quaternary AgInZnS QDs.

Mikrochim Acta

June 2021

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

A sensitive fluorescence strategy was constructed for the detection of α-glucosidase activity based on AgInZnS QDs. The AIZS QDs which were synthesized by hydrothermal method have a fluorescence emission wavelength of 554 nm. Ce was able to oxidize p-phenylenediamine (PPD) to generate oxPPD, which can quench the fluorescence of AIZS QDs through dynamic quenching.

View Article and Find Full Text PDF

α-Glucosidase and its inhibitors play a key role in diagnosis and treatment of diabetes. In the present work, we established a facile, sensitive and selective fluorescence method based on silicon quantum dots (SiQDs) and MnO nanosheets for the determination of α-glucosidase and one of its inhibitors acarbose. The fluorescence of SiQDs was greatly quenched by MnO nanosheets due to the inner filter effect.

View Article and Find Full Text PDF

In recent years, α-glucosidase (α-Glu) inhibitor has been widely used in clinic for diabetic and HIV therapy. Although different systems have been constructed for sensitive and selective detection of α-Glu and screening its inhibitor, the method based on ratiometric fluorescence for α-glucosidase inhibitor screening remains poorly investigated. Herein, we constructed a new MnO nanosheet (NS)-based ratiometric fluorescent sensor for α-glucosidase activity assay and its inhibitor screening.

View Article and Find Full Text PDF

Aim: α -Acid glycoprotein (AAG), which is a major binding protein of docetaxel, is considered to be a determinant for docetaxel pharmacokinetics. However, there are no reports about the impact of serum AAG on pharmacokinetics and pharmacodynamics in elderly patients treated with docetaxel. The aim of this prospective study was to elucidate the effects of advanced age and serum AAG on docetaxel unbound exposure and neutropenia, dose-limiting toxicity, in cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!