New Zealand's endemic Stewart Island Shag (Leucocarbo chalconotus) comprises two regional groups (Otago and Foveaux Strait) that show consistent differentiation in relative frequencies of pied versus dark-bronze morphotypes, the extent of facial carunculation, body size and breeding time. We used modern and ancient DNA (mitochondrial DNA control region one), and morphometric approaches to investigate the phylogeography and taxonomy of L. chalconotus and its closely related sister species, the endemic Chatham Island Shag (L. onslowi). Our analysis shows Leucocarbo shags in southern New Zealand comprise two well-supported clades, each containing both pied and dark-bronze morphs. However, the combined monophyly of these populations is not supported, with the L. chalconotus Otago lineage sister to L. onslowi. Morphometric analysis indicates that Leucocarbo shags from Otago are larger on average than those from Foveaux Strait. Principal co-ordinate analysis of morphometric data showed substantial morphological differentiation between the Otago and Foveaux Strait clades, and L. onslowi. The phylogeographic partitioning detected within L. chalconotus is marked, and such strong structure is rare for phalacrocoracid species. Our phylogenetic results, together with consistent differences in relative proportions of plumage morphs and facial carunculation, and concordant differentiation in body size and breeding time, suggest several alternative evolutionary hypotheses that require further investigation to determine the level of taxonomic distinctiveness that best represents the L. chalconotus Otago and Foveaux Strait clades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948693PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090769PLOS

Publication Analysis

Top Keywords

foveaux strait
16
island shag
12
otago foveaux
12
stewart island
8
shag leucocarbo
8
leucocarbo chalconotus
8
facial carunculation
8
body size
8
size breeding
8
breeding time
8

Similar Publications

Bioeroding sponges can cause extensive damage to aquaculture and wild shellfish fisheries. It has been suggested that heavy sponge infestations that reach the inner cavity of oysters may trigger shell repair and lead to adductor detachment. Consequently, energy provision into shell repair could reduce the energy available for other physiological processes and reduce the meat quality of commercially fished oysters.

View Article and Find Full Text PDF

The flat oyster, Ostrea chilensis, native to New Zealand (NZ) and Chile is considered an important ecological, cultural and fisheries resource. Currently, commercial landings of this species in NZ are restricted due to low population numbers caused by ongoing mortalities resulting from the presence of the haplosporidian parasite, Bonamia exitiosa. More recently, the arrival of B.

View Article and Find Full Text PDF

Apicomplexan-X (APX) is a significant pathogen of the flat oyster Ostrea chilensis in New Zealand. The life cycle and host range of this species are poorly known, with only the zoite stage identified. Here, we report the use of molecular approaches and histology to confirm the presence of APX in samples of green-lipped mussels Perna canaliculus, Mediterranean mussels Mytilus galloprovincialis and hairy mussels Modiolus areolatus collected from widely distributed locations in New Zealand.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding prehistoric human effects on biodiversity is crucial for biologists and archaeologists.
  • The study of New Zealand’s Stewart Island Shag shows that, while it once thrived across coastal South Island, human arrival around 1280 AD led to significant population declines in the southeast lineage.
  • In contrast, the southern lineage has remained stable since human settlement, indicating varying levels of human impact across different regions.
View Article and Find Full Text PDF

New Zealand's endemic Stewart Island Shag (Leucocarbo chalconotus) comprises two regional groups (Otago and Foveaux Strait) that show consistent differentiation in relative frequencies of pied versus dark-bronze morphotypes, the extent of facial carunculation, body size and breeding time. We used modern and ancient DNA (mitochondrial DNA control region one), and morphometric approaches to investigate the phylogeography and taxonomy of L. chalconotus and its closely related sister species, the endemic Chatham Island Shag (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!