To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2014.03.001DOI Listing

Publication Analysis

Top Keywords

cortical bone
16
bone
8
superolateral femoral
8
femoral neck
8
hip fracture
8
fracture group
8
cortical
6
fracture
5
nano-structural compositional
4
compositional micro-architectural
4

Similar Publications

Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol-gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite.

View Article and Find Full Text PDF

High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site.

View Article and Find Full Text PDF

Simulation analysis of surgical neck fractures of the humerus related to bone degeneration.

Comput Methods Biomech Biomed Engin

January 2025

Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.

The most common type of proximal humerus fracture is surgical neck fracture. The purpose of this paper is to study the mechanical mechanism and the effect of bone degeneration on humeral surgical neck fractures. The right humerus finite element models were established based on CT computed tomography.

View Article and Find Full Text PDF

Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.

View Article and Find Full Text PDF

Proposal of staging system and treatment guideline for diagnostically challenging primary intra-osseous carcinoma: A retrospective single-center case series and literature review.

J Stomatol Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul National University Dental Hospital, Seoul, 03080, South Korea; Department of One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, South Korea. Electronic address:

The objective of this retrospective study is to examine the clinical, imaging and pathologic features of 10 patients diagnosed with 'primary intraosseous carcinoma (PIOC)' at a single institution and to identify factors affecting the prognosis of PIOC patients. By proposing a new staging system based on tumor size, cortical bone deformation, neck metastasis and histologic grade, the study aims to address the lack of a distinct staging system, which has led to the mixed use of oral squamous cell carcinoma classification. Furthermore, the study intends to propose a treatment guideline based on the newly proposed staging system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!