Prepulse inhibition of the startle reflex (PPI) is an operational measure of sensorimotor gating, which is demonstrated to be impaired in patients with schizophrenia. In addition, a disruption of the circadian rhythm together with blunted melatonin secretion is regularly found in patients with schizophrenia and it is theorized that these may contribute to their attentional deficits. The aim of this study was to assess the effects of acute melatonin on healthy human sensorimotor gating. Twenty-one healthy male volunteers were administered melatonin or placebo after which their levels of PPI were assessed. Melatonin significantly reduced startle magnitude and ratings of alertness, but did not influence PPI, nor sensitization and habituation. However, when taking baseline scores in consideration, melatonin significantly increased PPI in low scoring individuals while significantly decreasing it in high scoring individuals in low intensity prepulse trialtypes only. In addition, subjective ratings of alertness correlated with PPI. The results suggest that melatonin has only minor influences on sensorimotor gating, habituation and sensitization of the startle reflex of healthy males. The data do indicate a relationship between alertness and PPI. Further research examining the effects of melatonin on these processes in patients with schizophrenia is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psychres.2014.02.030 | DOI Listing |
Nat Commun
January 2025
Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France.
To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
Background: Stiff Person Spectrum Disorders (SPSD) are classically defined by the presence of muscle stiffness, spasms and hyperactivity of the central nervous system. There is a notable correlation between neurophysiological features and the clinical hallmark of SPSD, which has greatly encouraged the use of these techniques for diagnostic purposes. Besides, electrophysiological techniques allow for a functional evaluation of the 'hyperactivity of the CNS', thus offering the opportunity to clarify the mechanisms underlying this disorder.
View Article and Find Full Text PDFPsychophysiology
January 2025
Research Group Health Psychology, KU Leuven, Leuven, Belgium.
Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a strategy to facilitate fear extinction learning based on the hypothesis that taVNS increases central noradrenergic activity. Four studies out of six found taVNS to enhance extinction learning especially at the beginning of extinction. Facilitatory effects of taVNS were mainly observed in US expectancy, less in fear-potentiated startle (FPS), and not in the skin conductance response (SCR).
View Article and Find Full Text PDFBrain Behav
January 2025
INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.
Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.
Neuroscience
February 2025
School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China.
Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!