Fabricated or induced illness (previously known as Munchausen syndrome by proxy) takes place when a caregiver elicits health care on the child's behalf in an unjustified way. Although the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders specifies deception as a perpetrator characteristic, a far wider range is encountered clinically and is included in this Review. We describe the features of fabricated or induced illness, its effect on the child, and the psychosocial characteristics of caregivers and their possible motives. Present evidence suggests that somatoform and factitious disorders are over-represented in caregivers, with possible intergenerational transmission of abnormal illness behaviour from the caregiver to the child. Paediatricians' early recognition of perplexing presentations preceding fabricated or induced illness and their management might obviate the development of this disorder. In cases of fully developed fabricated or induced illness, as well as protection, the child will need help to return to healthy functioning and understand the fabricated or induced illness experience. Management of the perpetrator is largely dependent on their capacity to acknowledge the abusive behaviour and collaborate with helping agencies. If separation is necessary, reunification of mother and child is rare, but can be achieved in selected cases. More collaborative research is needed in this specialty, especially regarding close study of the characteristics of women with somatoform and factitious disorders who involve their children in abnormal illness behaviour. We recommend that general hospitals establish proactive networks including multidisciplinary cooperation between designated staff from both paediatric and adult mental health services.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(13)62183-2 | DOI Listing |
ACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan.
In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a ← 1b transition.
View Article and Find Full Text PDFNanoscale
January 2025
Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
Acetaminophen (AP) is a widely used analgesic and antipyretic drug, but its excessive use poses health risks and contributes to environmental contamination. In response to the need for rapid, accurate, and cost-effective detection methods, we developed a highly sensitive and selective electrochemical sensor for AP. The sensor was based on a composite of UIO-66-NH (UN) and an MXene (TiC).
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFCurr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!