The dynamics of Pd-based metallic glass-forming liquids (Pd(40)Ni(10)Cu(30)P(20), Pd(42.5)Ni(7.5)Cu(30)P(20), Pd(40)Ni(40)P(20), and Pd(30)Ni(50)P(20)) was studied by mechanical spectroscopy and modulated differential scanning calorimetry (MDSC). We found that the change in composition has a significant effect on the α relaxation dynamics; the largest difference corresponds to an increase of the glass transition temperature Tg of ∼ 15 K, for materials in which 30% Ni was substituted by 30% Cu (i.e., from Pd(40)Ni(40)P(20) to Pd(40)Ni(10)Cu(30)P(20)). We also found that all Pd-based metallic glasses have very similar fragilities, 59 < m < 67, and Kohlrausch stretched exponents, 0.59 < βKWW < 0.60. It is interesting that the values of m and βKWW correlate well with the general relation proposed by Böhmer et al. for nonmetallic glass formers (Böhmer, R.; et al. J. Chem. Phys. 1993, 99, 4201-4209), which for the observed βKWW values predicts 58 < m < 61. From a linear deconvolution of the α and β relaxations, we find that the substitution of the Ni with Cu induced a large change in the time constant of the Johari-Goldstein relaxation, τβ. The activation energy, Uβ, of the β relaxation was largely independent of chemical composition. In all cases, 25 < Uβ/RT < 28, a range in agreement with results for other glass formers (Kudlik, A.; et al. Europhys. Lett. 1997, 40, 649-654 and Ngai, K. L.; et al. Phys. Rev. E 2004, 69, 031501). From the heat capacity and mechanical loss, estimates were obtained for the number of dynamically correlated units, Nc; we find significantly larger values for these metallic glass-forming liquids than Nc for other glass-forming materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp4121782 | DOI Listing |
Talanta
December 2024
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:
Herein, a novel electrothermal desolvation (ED) introduction approach is developed to enhance the analytical sensitivity of the point discharge (PD)-based microplasma-optical emission spectrometric (PD-MIP-OES) system for detecting trace Cd, Zn, Pb and Mn in environmental water samples. Liquid samples are converted into aerosols through a miniature ultrasonic nebulizer, and subsequently desolvated by electric heating at 350 °C. The analytes obtained after condensation (referring to the smaller apertures aerosols and volatile analytes after ED and condensation) are excited and detected by PD-MIP-OES.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Research Institute of Hydrogen Energy, Kuban State University, Krasnodar 350040, Russia.
Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
The development of Pd-based catalysts with outstanding activity and stability can further promote the hydrogen storage application of formic acid (FA). Regulating the support structure is an effective strategy for enhancing active sites in heterogeneous catalytic systems. This study prepared three types of nanosized ZrO through phase engineering to support Pd metal and investigated the implications of support structure on the microenvironment of active sites, thus revealing the structure-activity relationship of the catalysts.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway.
Biologically mediated nanoparticle (NP) synthesis offers a reliable and sustainable alternative route for metal NP production. Compared with conventional chemical and physical production methods that require hazardous materials and considerable energy expenditure, some microorganisms can reduce metal ions into NPs during standard metabolic processes. However, to be considered a feasible commercial option, the properties and inherent activity of bio-NPs still need to be significantly improved.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China. Electronic address:
Interface engineering is an important strategy to improve the oxygen reduction reaction (ORR) performance of metal-based electrocatalysts. However, how to develop efficient and abundant interface is still a challenge. Herein, the three-dimensional mesoporous metal oxide-supported Pd-based catalyst was prepared and its ORR activity was further improved through the interfacial modification with microporous covalent organic polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!