A reliable and suitable method for the determination of epoxy fatty acids in various food matrices based on the Bligh and Dyer lipid extraction procedure was developed and validated. The method involves the use of a methylated epoxy fatty acid as internal standard (IS), extraction of the analytes from the matrices followed by room temperature methylation, a three-step solid phase extraction (SPE) separation of the fatty acid methyl esters (FAMEs), and detection with gas chromatography-flame ionization detection (GC-FID). The method was validated in four different food matrices chosen as model systems, namely, vegetable oils, unprocessed pork, fried potato crisps, and infant formula. The extraction technique allows the method to be applied for routine analysis of a large amount of samples. Intraday repeatability ranged from 1 to 19%, and interday reproducibility ranged from 2 to 9%. The limit of quantification (LOQ) ranged from 3.32 to 20.47 μg g(-1) of sample with recoveries ranging from 94 to 115%. The results verify the accuracy and reproducibility of the analytical technique and its ability to provide reliable quantification of epoxy fatty acids. Finally, levels of epoxy fatty acids in several food products on the Belgian market were screened and are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf405664c | DOI Listing |
Int J Mol Sci
December 2024
Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Graduate Program in Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil. Electronic address:
The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.
View Article and Find Full Text PDFCell Death Dis
December 2024
CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Republic of Korea. Electronic address:
J Proteome Res
December 2024
CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Pharmacological targeting of metabolic pathways represents an appealing strategy to selectively kill cancer cells while promoting antitumor functions of stromal cells. In this study, we assessed the effectiveness of 13 metabolic drugs (MDs) in steering generated breast tumor-educated macrophages (TEMs) toward an antitumoral phenotype. For that, the production of vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF-α), two important regulators of tumor progression, was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!