To resolve the contradiction between spatial resolution and analysis sensitivity in single pulse laser-induced breakdown spectroscopy (LIBS), a study on dual-wavelength laser-ablation laser-induced breakdown spectroscopy (LA-LIBS) was carried out by using one Nd : YAG laser which was capable of two laser beam outputs with different wavelengths, where, the second harmonic output, 532 nm laser beam, was used as laser-ablation source, and the fundamental output, 1064 nm laser beam, was delivered with a large core diameter silica fiber to realize nanoseconds time-delay and then used to breakdown the ablated samples. Two laser beams were orthogonally arranged to realize element analysis with high spatial resolution and high sensitivity. Some key techniques on the coupling of 1064 nm laser beam into fiber, the collimation of laser at the fiber end and re-focusing of the laser beam were studied. The energy delivery capabilities of four fibers of different types were studied and the maximum values were determined experimentally. A Q-switched laser pulse with 15 mJ pulse energy was successfully delivered by selecting a 50 meter long silica fiber with 800 microm core diameter and 0. 39 numerical aperture. And 250 ns time-delay was realized. A copper alloy was analyzed by spectra with current established LA-LIBS system and the possibility of realizing dual-wavelength LA-LIBS analysis based on one Nd : YAG laser was demonstrated experimentally. In this technique, only one Nd: YAG laser was required to carry out spectral analysis. It has a few advantages, such as simple equipment structure, and being convenient to miniaturize the whole system etc. This dual-wavelength LA-LIBS technique was suitable for in-situ elements microanalysis for different samples with both high spatial resolution and high sensitivity.
Download full-text PDF |
Source |
---|
Cornea
January 2025
Academic Ophthalmology, School of Medicine, AU1, University of Nottingham, Nottingham, United Kingdom.
Purpose: Anterior segment optical coherence tomography (AS-OCT) is increasingly being used to complement slit-lamp biomicroscopy in the evaluation of corneal infections. Our purpose was to analyze, compare, and correlate the clinical signs elicited by these 2 methods in patients with infectious keratitis (IK).
Methods: Slit-lamp photomicrographs (diffuse and slit beam) and AS-OCT scans were obtained from 20 consecutive patients (21 eyes) with IK.
Nanomaterials (Basel)
December 2024
Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria.
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.
The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Břežany, Czechia.
We present an active alignment and stabilization control system for laser setups based on a thin-disk regenerative amplifier. This method eliminates power and pointing instability during the warm-up period and improves long-term stability throughout the entire operation. The alignment method is based on a four-mirror control system consisting of two motorized mirrors placed within the regenerative amplifier cavity, two additional motorized mirrors external to the amplifier cavity, and four camera detectors.
View Article and Find Full Text PDFBMC Cancer
January 2025
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine.
Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!