Allele frequencies of 15 STRs included in the PowerPlex 16 System (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, VWA, D8S1179, TPOX and FGA) were calculated from the referent sample of 100 unrelated individuals of both sexes from Turkish student population living in Sarajevo, Bosnia and Herzegovina. Buccal swab, as a source of DNA, was collected from the volunteers from whom the informed consent form was obtained. DNA extraction was performed using QIAamp DNA Micro kit by Qiagen. DNA template ranging from 0.5 to 2 ng was used to amplify 15 STR loci by PCR multiplex amplification which was performed by using the PowerPlex 16 kit (Promega Corp., Madison, WI, USA) according to the manufacturer's protocol. The amplifications were carried out in a PE Gene Amp PCR System thermal cycler (Applied Biosystems) and capillary electrophoresis was carried out in an ABI PRISM 310 Genetic Analyzer (Applied Biosystems) in accordance with the manufacturer's recommendations. The frequency of each locus was calculated from the numbers of each observed genotype. Deviation from Hardy-Weinberg equilibrium and observed heterozygosity were calculated. Data were analyzed by using Microsoft Excel workbook template--Powerstats V12 and the power of discrimination (PD), power of exclusion (PE), as well as other population genetic indices for the 15 STR loci were calculated. Obtained results contribute to existing Turkish DNA database, as well as insight of differences and similarities in comparison to population of Bosnia and Herzegovina. In addition, 13 autosomal STR loci frequencies (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSFIPO, Penta D, VWA, D8S1 179, TPOX, and FGA) were studied in 15 different worldwide populations (Turkish, Bosnian, Croatian, Serbian, Montenegrin, Macedonian, Albanian, Kosovan, Greek, Russian, Japanese, Korean, Lithuanian, Iraqi, Belarusian). For the proof of corresponding data, two different Turkish population STR data obtained from previously published articles were compared with our data and this showed that our data correspond to these 2 previously published data. Further, STR allele frequency data for 13 loci for each population were obtained from previous scientific articles and the allele frequencies and genetic diversity among the 15 sample populations were compared. In addition, even though the populations are from different nationalities, the STR data are similar among the geographically close populations. The phylogenetic tree established among worldwide populations and genetic distance values show a great affinity among the 15populations. Our data is useful for anthropological and further comparative genetic studies of populations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

str loci
16
bosnia herzegovina
12
data
9
turkish student
8
student population
8
population living
8
living sarajevo
8
sarajevo bosnia
8
allele frequencies
8
d3s1358 th01
8

Similar Publications

First Detection and Genomic Characterization of Linezolid-Resistant Clinical Isolates in Bulgaria.

Microorganisms

January 2025

Department of Medical Microbiology "Corr. Mem. Prof. Ivan Mitov, MD, DMSc", Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria.

Linezolid is an oxazolidinone antibiotic and is considered a last-resort treatment option for serious infections caused by problematic Gram-positive pathogens, including vancomycin-resistant enterococci. The present study aimed to explore the linezolid resistance mechanisms and genomic characteristics of two vancomycin-susceptible isolates from Bulgaria. The strains designated Efs2503-bg (inpatient from Pleven) and Efs966-bg (outpatient from Varna) were recovered from wounds in 2018 and 2023, respectively.

View Article and Find Full Text PDF

Autosomal and Y-STR genetic database from a population of the Spanish Civil War (1936-1939) and the postwar period.

Int J Legal Med

January 2025

Laboratory of Forensic and Population Genetics, Legal Medicine, Psychiatry and Pathology Department, Medicine School, Complutense University of Madrid, Madrid, 28040, Spain.

Under the initiative of the "Direcció General de Memòria democràtica-Departament de Justícia" (Generalitat of Catalonia, Spain), a multi-disciplinar project was funded to identify the remains of people disappeared in Catalonia during and after the Spanish Civil War (1936-1939). Samples were officially sent by Autonomous Government of Catalonia to the Laboratory of Forensic and Population Genetics at Complutense University, Madrid, Spain, to be genotyped. Our study presents a database of 343 victims genotyped for STRs comprised in GlobalFiler™ PCR Amplification Kit (Thermofisher Scientific) and a subset of 292 typed with Y-STRs from Yfiler™ Plus PCR Amplification Kit (Thermofisher Scientific).

View Article and Find Full Text PDF

Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination.

Forensic Sci Int Genet

January 2025

Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.

View Article and Find Full Text PDF

Forensic science takes advantage of population variability in autosomal Short Tandem Repeat (STR) lengths to establish human identification. The most common method for DNA profiling by STR is based on PCR, where the highly polymorphic STR regions are amplified and analysed using Capillary Electrophoresis (CE) or Massively Parallel Sequencing (MPS). MPS determines not only the repeat length, but also the repeat structure and variations in the flanking regions, making this method superior in discriminatory power compared to CE.

View Article and Find Full Text PDF

Application of a new composite genetic marker semen-specific methylation-microhaplotype in the analysis of semen-vaginal fluid mixtures.

R Soc Open Sci

January 2025

Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, People's Republic of China.

DNA mixtures containing semen and vaginal fluid are common biological samples in forensic analysis. However, the analysis of semen-vaginal fluid mixtures remains challenging. In this study, to solve these problems, it is proposed to combine semen-specific CpG sites and closely related microhaplotype sites to form a new composite genetic marker (semen-specific methylation-microhaplotype).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!