Unlabelled: Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease that affects infants born preterm. Family studies indicate that BPD has a significant genetic component.
Rationale: We assessed the gene encoding Kit ligand (KITLG) as a candidate for genetic predisposition to moderate-to-severe BPD (controls were infants with no or mild BPD).
Study Design: Eight KITLG-tagging single nucleotide polymorphisms (SNPs) were analyzed in cohorts of very preterm infants originating from northern Finland (56 cases and 197 controls), southern Finland (n = 59 + 52), and Canada (n = 58 + 68). Additional replication populations included infants born in Finland (n = 41 + 241) and Hungary (n = 29 + 40). All infants were of European origin. Results were controlled for risk factors of BPD. Kit ligand concentration in umbilical cord blood, collected from very preterm infants (n = 120), was studied.
Results: Six SNPs of KITLG and a haplotype including all eight genotyped SNPs were associated with moderate-to-severe BPD in the northern Finnish population. When all the populations were combined, SNP rs11104948 was significantly associated with BPD. Kit ligand concentration in umbilical cord blood of infants born very preterm was an independent risk factor of BPD.
Conclusions: We show that KITLG polymorphisms are associated with susceptibility to moderate-to-severe BPD. In addition, higher Kit ligand concentrations were observed in infants that subsequently developed BPD. These results support the possibility that KITLG gene is involved in predisposition to BPD. Pediatr Pulmonol. 2015; 50:260-270. © 2014 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ppul.23018 | DOI Listing |
J Tissue Eng
January 2025
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
Malformations of cortical development encompass a broad range of disorders associated with abnormalities in corticogenesis. Widespread abnormalities in neuronal formation or migration can lead to small head size or microcephaly with disorganized placement of cell types. Specific, localized malformations are termed focal cortical dysplasias (FCD).
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFNat Aging
January 2025
Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
METU MEMS Center, Ankara, Turkey.
Male factor accounts for 30-50% of infertility cases and may occur due to congenital anomalies or acquired disorders. In such infertility cases where a limited number of mature sperm is produced, a solution is offered to patients with ART applications; however, these methods are inadequate in patients with germ cell aplasia due to damaged microenvironment. Since monolayer cell culture and static culture conditions do not provide the physical conditions of the 3D microenvironment, they have a limited effect on ensuring the execution of in vitro spermatogenesis properly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!