The purpose of this work was to carry out diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Using an institutional review board approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3 T scanner at rest and after treadmill exertion at four different T(d) values. Radial diffusion values λ(rad) were computed for each of seven different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D(0), fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D(0) showed significant (p < 0.05) increases with exercise for volunteers, and a increased significantly (p < 0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p = 0.07), and larger permeability increases (p = 0.07) than controls. Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be useful in differentiating CECS from other disorders or in predicting its response to either physical therapy or fasciotomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980069 | PMC |
http://dx.doi.org/10.1002/nbm.3087 | DOI Listing |
Nanomicro Lett
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States.
Significance: Existing photoacoustic phantoms are unable to mimic complex microvascular structures with varying sizes and distributions. A suitable material with structures that mimic intricate microvascular networks is needed.
Aim: Our aim is to introduce loofah as a natural phantom material with complex fiber networks ranging from 50 to , enabling the fabrication of phantoms with controlled optical properties comparable to those of human microvasculature.
Front Bioeng Biotechnol
January 2025
Qujing Affiliated Hospital of Kunming Medical University, Qujing, China.
Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. , the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa.
View Article and Find Full Text PDFBiomater Sci
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, China.
Photothermal treatment has attracted immense interest as a promising approach for biomedical applications such as cancer ablation, yet its effectiveness is often limited by insufficient laser penetration and challenges in achieving efficient targeting of photothermal agents. Here we developed a transvascular interventional photothermal therapy (Ti-PTT), which employed a small-sized microcatheter (outer diameter: 0.60 mm, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!