The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.23579 | DOI Listing |
Adv Sci (Weinh)
January 2025
The department of oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.
View Article and Find Full Text PDFCureus
December 2024
Department of Pediatrics, Japanese Red Cross Wakayama Medical Center, Wakayama, JPN.
Acute ischemic stroke, a medical emergency caused by reduced cerebral blood flow, results in brain cell damage. While commonly associated with older individuals, strokes can also occur in young and middle-aged adults, posing significant socio-economic and health challenges due to the long-term impact of the condition. This poses significant socio-economic and health challenges because stroke is a leading cause of disability and mortality.
View Article and Find Full Text PDFFront Neurosci
January 2025
Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States.
Introduction: Posttraumatic stress disorder (PTSD) is a debilitating disorder characterized by intrusive memories, avoidance, negative thoughts and moods, and heightened arousal. Many patients also report gastrointestinal symptoms. Cognitive behavioral therapy (CBT) is an evidence-based treatment approach for PTSD that successfully reduces symptoms.
View Article and Find Full Text PDFFront Neurosci
January 2025
School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan City, China.
Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!