Sensitive methods for assessment of the hemostatic state are essential for providing adequate therapy to patients with β-thalassemia. The present study was designed to monitor the changes in the hemostatic state of a patient with β-thalassemia at the primary stage and under heparin treatment following splenectomy. The hemostatic state of the patient was assessed using conventional tests (activated partial thromboplastin time, prothrombin index, thrombin time), fibrinogen and D-dimer assays, thromboelastography (TEG), thrombin generation test, and a novel thrombodynamics clot growth assay. Thrombodynamics parameters indicated the hypercoagulation state on the primary evaluation which progressed after splenectomy: stationary clot growth velocity increased from 32 to 38 μm/min (normal range 20-30 μm/min). Hypercoagulation state was confirmed by Doppler echocardiography, which detected portal vein thrombosis on day 23 after surgery. The results of the other tests' parameters were in the normal ranges before splenectomy. The TEG parameters were sensitive to low molecular weight heparin (LMWH) injections; but the values were close to the normal ranges before and after injections. The thrombodynamics assay demonstrated a high sensitivity to LMWH injections, and registered a decrease of the hypercoagulability in the course of therapy (P < 0.05). TGT was not performed during LMWH therapy. This clinical case demonstrates the potential of the thrombodynamics assay to serve as a sensitive method for coagulation system monitoring and prediction of prothrombotic tendencies in patients with hemolytic anemias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12185-014-1559-1 | DOI Listing |
Atrial fibrillation (AF) and heart failure (HF) often accompany each other, as they share similar risk factors and pathophysiological mechanisms. AF in patients with HF is known to increase hospitalizations and worsen prognosis. A combination of AF and HF translates into high risks of thromboembolic complications, which renders anticoagulants an important aspect of therapy for these patients.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China. Electronic address:
Tissue adhesives have attracted significant interest in the field of hemostasis. However, challenges including weak tissue adhesion, inadequate biocompatibility, and instability limit their clinical applications. Here, we have developed a gelatin-DOPA-knob/fibrinogen hydrogel inspired by the fibrin polymerization and mussel adhesion, resulting in a biocompatible bioadhesive with outstanding adhesion performance and great storage stability.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
Irregularly shaped wounds cause severe chronic infections, which have attracted worldwide attention due to their high prevalence and poor treatment outcomes. In this study, we designed a new composite functional dressing consisting of traditional Chinese herb carbonized plant powder (CPP) and a polyacrylic acid (PAA)/polyethylenimine (PEI) gel. The rapid gelation of the dressing within 6-8 s allowed the gel to be firmly attached to an irregularly shaped wound surface and avoided powder detachment.
View Article and Find Full Text PDFGels
December 2024
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620108 Ekaterinburg, Russia.
The use of glycerolates of biogenic elements as biocompatible precursors in sol-gel synthesis is an innovative direction and opens up new scientific and practical prospects in chemistry and technology of producing practically important biomedical materials, including hemostatic, antimicrobial, and wound healing materials. Using biocompatible precursors, silicon, zinc, boron, and iron glycerolates, new bioactive nanocomposite hydrogels were obtained by the sol-gel method. The composition and structural features of the hydrogels were studied using a complex of modern analytical techniques, including TEM, XRD, AES, and ESI MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!