G4 motifs are greatly enriched near promoters, suggesting that quadruplex structures may be targets of transcriptional regulation. Here we show, by ChIP-Seq analysis of human cells, that 40% of the binding sites of the transcription-associated helicases, XPB and XPD, overlap with G4 motifs. The highly significant overlap of XPB and XPD binding sites with G4 motifs cannot be explained by GC richness or parameters of the genomewide analysis, but instead suggests that these proteins are recruited to quadruplex structures that form in genomic DNA (G4 DNA). Biochemical analysis demonstrates that XPD is a robust G4 DNA helicase and that XPB binds G4 DNA. XPB and XPD are enriched near the transcription start site at 20% of genes, especially highly transcribed genes. XPB and XPD enrichment at G4 motifs characterizes specific signaling pathways and regulatory pathways associated with specific cancers. These results identify new candidate pathways for therapies targeted to quadruplexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006364 | PMC |
http://dx.doi.org/10.1038/nchembio.1475 | DOI Listing |
Nat Commun
October 2024
Department of Chemistry, Georgia State University, Atlanta, GA, USA.
Brain
December 2023
Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
Xeroderma pigmentosum (XP) results from biallelic mutations in any of eight genes involved in DNA repair systems, thus defining eight different genotypes (XPA, XPB, XPC, XPD, XPE, XPF, XPG and XP variant or XPV). In addition to cutaneous and ophthalmological features, some patients present with XP neurological disease. It is unknown whether the different neurological signs and their progression differ among groups.
View Article and Find Full Text PDFDNA Repair (Amst)
December 2023
Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands. Electronic address:
The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage.
View Article and Find Full Text PDFEnzymes
November 2023
Department of Biochemistry, University of California, Riverside, CA, United States. Electronic address:
Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment.
View Article and Find Full Text PDFNat Commun
May 2023
Department of Chemistry, Georgia State University, Atlanta, GA, USA.
Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!