A promising approach to create functional nanoarrays is supramolecular self-assembly at liquid-solid interfaces. In the present investigation, we report on the self-assembly of phthalocyanine arrays using triphenylene-2,6,10-tricarboxylic acid (H₃TTCA) as a molecular nanotemplate. Five different metastable arrays are achieved in the study, including a thermodynamically stable configuration. Scanning tunneling microscopy (STM) measurements and density function theory (DFT) calculations are utilized to reveal the formation mechanism of the molecular nanoarrays. In general, the transformation process of nanoarrays is regulated by the synergies of a template effect and thermodynamic balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr06320h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!