SET domain and mariner transposase fusion gene (SETMAR), also known as Metnase, has previously been shown to suppress the formation of chromosomal translocation in mouse fibroblasts. Despite the fact that hematologic malignancies are often characterized by chromosomal rearrangements, no studies have hitherto investigated the expression pattern of the gene in these disorders. We hypothesized that a high expression of SETMAR protected the cells from chromosomal rearrangements; thus, we examined the mRNA expression of SETMAR transcript variants in hematologic patients. We identified six transcript variants (var1, var2, var5, varA, varB, varC), of which three had not been reported previously. Expression levels were quantified by transcript-specific quantitative polymerase chain reaction in 15 healthy individuals, 70 acute myeloid leukemia (AML) patients (translocation positive, n= 30 [AML(TPos)], translocation negative, n = 40 [AML(TNeg)]), seven patients with mantle cell lymphoma (t [11,14] positive), and 13 patients with chronic myeloid leukemia (t [9,22] positive). All variants were significantly overexpressed in both subgroups of AML compared with healthy individuals (var1 and var2: p < 0.00001 for both AML subgroups, varA and varB: p = 0.0002, var5: p = 0.0008, and varC: p = 0.0001 for AML(TNeg); varA: p = 0.0048, varB and var5: p = 0.0001, varC: p = 0.0017). When comparing the expression in AML(TNeg) and AML(TPos), we found a significantly increased expression of the full length SETMAR in AML(TNeg) (var1: p = 0.047), suggesting a protective effect of high SETMAR expression on formation of chromosomal translocations. In conclusion, we have found known and novel SETMAR splice variants to be significantly increased in AML. To our knowledge, this is the first study that describes an expression profile of SETMAR in subgroups of hematologic malignancies, which can be linked to the incidence of chromosomal rearrangements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2014.02.005DOI Listing

Publication Analysis

Top Keywords

transcript variants
12
chromosomal rearrangements
12
expression
9
setmar
8
setmar metnase
8
expression profile
8
formation chromosomal
8
hematologic malignancies
8
expression setmar
8
var1 var2
8

Similar Publications

Experiences of patients who retest positive for SARS-CoV-2 Omicron variant after discharge: a qualitative study.

J Infect Dev Ctries

December 2024

The Cancer Hospital Affiliated to Shandong First Medical University (Shandong Cancer Prevention Research Institute, Shandong Cancer Hospital), Jinan 250117, China.

Introduction: In this study, we analyzed the psychological aspects of coronavirus disease 2019 (COVID-19) patients who were discharged from the hospitals in Shanghai, China, and later had positive nucleic acid retest results for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection (re-positive COVID-19). The purpose was to gain clarity on the patients' needs and to provide evidence for the medical staff to deliver scientific and targeted health care to the patients.

Methodology: We screened patients who tested positive for SARS-CoV-2 Omicron variant infection by nucleic acid testing after having previously recovered from a COVID-19 infection and being discharged from Shanghai shelter hospitals or COVID-19-designated hospitals from April 3, 2022, to May 10, 2022.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Distribution of BCR::ABL1 transcript types and response to therapy in pediatric patients with chronic myeloid leukemia.

J Mol Diagn

January 2025

Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany. Electronic address:

Achieving a stable deep molecular response with the option to discontinue tyrosine kinase inhibitors (TKI) treatment is the new therapeutic goal for patients with chronic myeloid leukemia (CML). Several studies have shown that individuals expressing the BCR::ABL1 e14a2 transcript achieve a major molecular response more rapidly than those with the e13a2 transcript. However, technical issues may have confounded these observations, and data for pediatric patients are limited.

View Article and Find Full Text PDF

A genomic variation map provides insights into potato evolution and key agronomic traits.

Mol Plant

January 2025

Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:

Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.

View Article and Find Full Text PDF

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!