DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation.

Biochem Biophys Res Commun

Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054, France. Electronic address:

Published: March 2014

Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.02.122DOI Listing

Publication Analysis

Top Keywords

5-hmc
5
dna
4
dna binding
4
binding p21
4
p21 repressor
4
zbtb2
4
repressor zbtb2
4
zbtb2 inhibited
4
inhibited cytosine
4
cytosine hydroxymethylation
4

Similar Publications

[Advances in epigenetic regulation of the dioxygenase TET1].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Veterinary Medicine, Southwest University, Chongqing 402460, China.

Ten-eleven translocation 1 (TET1) protein is an alpha-ketoglutaric acid (α-KG) and Fe-dependent dioxygenase. It plays a role in the active demethylation of DNA by hydroxylation of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC). Ten-eleven translocation 1 (TET1) protein is involved in maintaining genome methylation homeostasis and epigenetic regulation.

View Article and Find Full Text PDF

DNA methylation, an epigenetic mark, has become a common outcome in epidemiological studies with the aid of affordable and reliable technologies. Yet the most widespread technique used to assess methylation, bisulfite conversion, does not allow for the differentiation of regular DNA methylation (5-mC) and other cytosine modifications, like that of hydroxymethylation (5-hmC). As both 5-mC and 5-hmC have distinct biological roles, sometimes with opposing effects, it is crucial to understand the difference between these marks.

View Article and Find Full Text PDF
Article Synopsis
  • - Tissue nanotransfection (TNT) uses plasmids (Etv2, Foxc2, and Fli1) to enhance the formation of vasculogenic fibroblasts (VF) in ischemic skin of mice, promoting new blood vessel growth.
  • - In vitro studies show that human dermal fibroblasts exhibit increased endothelial gene expression upon EFF nanoelectroporation, with a link to higher ten-eleven translocase (TET) expression.
  • - The study demonstrates that TET activation is crucial for VF development in diabetic ischemic limbs, facilitating blood flow restoration and improved wound healing, especially since TET levels are usually lower in diabetic conditions.
View Article and Find Full Text PDF

Epigenetic regulation of myogenesis by vitamin C.

J Cell Physiol

October 2024

Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.

The micronutrient vitamin C is essential for the maintenance of skeletal muscle health and homeostasis. The pro-myogenic effects of vitamin C have long been attributed to its role as a general antioxidant agent, as well as its role in collagen matrix synthesis and carnitine biosynthesis. Here, we show that vitamin C also functions as an epigenetic compound, facilitating chromatin landscape transitions during myogenesis through its activity as an enzymatic cofactor for histone H3 and DNA demethylation.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!