Capsid proteins of enveloped viruses as antiviral drug targets.

Curr Opin Virol

University of Grenoble Alpes-EMBL-CNRS, Unit for Virus Host-Cell Interactions, 6 rue Jules Horowitz, 38042, France.

Published: April 2014

Viral proteins have enabled the design of selective and efficacious treatments for viral diseases. While focus in this area has been on viral enzymes, it appears that multifunctional viral proteins may be even more susceptible to small molecule interference. As exemplified by HIV capsid, small molecule inhibitors can bind to multiple binding sites on the capsid protein and induce or prevent protein interactions and conformational changes. Resistance selection is complicated by the fact that the capsid proteins have to engage in different protein interactions at different times of the life cycle. Viral capsid assembly and disassembly have therefore emerged as highly sensitive processes that could deliver a new generation of antiviral agents across viral diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coviro.2014.02.002DOI Listing

Publication Analysis

Top Keywords

capsid proteins
8
viral proteins
8
viral diseases
8
small molecule
8
protein interactions
8
viral
6
capsid
5
proteins enveloped
4
enveloped viruses
4
viruses antiviral
4

Similar Publications

Background: Sugarcane is cultivated globally and affected by more than 125 pathogens, which lead to various plant diseases. In recent years, high-throughput sequencing (HTS)-based genome analyses have been broadly adopted for the discovery of both characterized and un-characterized viruses from plant samples. In this study, the HTS data of sugarcane pooled sample retrieved from sequence read archive (SRA) were de novo re-assembled using CLC Genomic Workbench.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.

View Article and Find Full Text PDF

As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.

View Article and Find Full Text PDF

In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!