Previous studies show that children who are sensitive to the bitter taste of 6-n-propylthiouracil (PROP) report more frequent intake of sweets and less frequent intake of meats (savory fats) relative to children who are PROP insensitive. Laboratory studies are needed to confirm these findings. In this study, seventy-nine 4- to 6-year-olds from diverse ethnicities attended four laboratory sessions, the last of which included a palatable buffet consisting of savory-fats (e.g. pizza), sweet-fats (e.g. cookies, cakes), and sweets (e.g. juices, candies). PROP phenotype was classified by two methods: 1) a common screening procedure to divide children into tasters and nontasters, and 2) a three-concentration method used to approximate PROP thresholds. Height and weight were measured and saliva was collected for genotyping TAS2R38, a bitter taste receptor related to the PROP phenotype. Data were analyzed by General Linear Model ANOVA with intake from savory fats, sweet-fats, and sweets as dependent variables and PROP status as the independent variable. BMI z-score, sex, age, and ethnicity were included as covariates. Adjusted energy intake from the food group "sweets" at the test-meal was greater for tasters than for nontasters. PROP status did not influence children's adjusted intake of savory-fats, but BMI z-score did. The TAS2R38 genotype did not impact intake at the test-meal. At a palatable buffet, PROP taster children preferentially consumed more sweets than nontaster children, while heavier children consumed more savory fats. These findings may have implications for understanding differences in susceptibility to hyperphagia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171728PMC
http://dx.doi.org/10.1016/j.appet.2014.02.019DOI Listing

Publication Analysis

Top Keywords

bitter taste
12
savory fats
12
prop
8
frequent intake
8
palatable buffet
8
prop phenotype
8
tasters nontasters
8
prop status
8
bmi z-score
8
children
6

Similar Publications

Purpose: The present study investigated the effect of unpleasant salty or bitter tastes on cycling sprint performance and knee-extensor force characteristics in different fatigue states.

Methods: Following a familiarization session, 11 trained male cyclists completed 3 experimental trials (salty, bitter, and water) in a randomized crossover order. In each trial, participants cycled at 85% of the respiratory compensation point for 45 minutes and then, after a 5-minute rest, completed a 1-minute sprint.

View Article and Find Full Text PDF

Plant metabolites known as cucurbitacins are known to impart an unpleasant bitter taste to edible fruits and even lead to severe health complications after the ingestion of relatively high amounts. In this study, an analytical method based on reversed phase liquid chromatography with combined detection by UV spectroscopy and atmospheric pressure chemical ionization high-resolution single/tandem mass spectrometry was applied to confirm the occurrence of four cucurbitacins (B, D, and R, and 23,24-dihydro cucurbitacin B) previously inferred in unexpectedly bitter-tasting fruits of an Italian variety (Scopatizzo) of unripe melon (Cucumis melo L.), known for the sweetness of its fruits.

View Article and Find Full Text PDF

Introduction: Variation in common taste receptor type 2 member 38 (TAS2R38) haplotypes is associated with bitter taste sensitivity, but there is not much or inconsistent evidence on association with food cravings and with chronic disease risk factors. We have conducted a cross-sectional study to assess whether genetically defined taster groups would differ in their sensitivity to bitter-tasting compounds, cravings for various food groups, and risk of chronic disease risk factors.  Methodology: A total of 116 non-diabetic individuals were recruited from the Loma Linda University (LLU) campus.

View Article and Find Full Text PDF

Roasting degrades the coffee compound mozambioside (1) into several products, including 17-O-β-D-glucosyl-11-hydroxycafestol-2-one (2), 11-O-β-D-glucosyl-16-desoxycafestol-2-one (3), 11-O-β-D-glucosyl-(S)-16-desoxy-17-oxocafestol-2-one (4), 11-O-β-D-glucosyl-15,16-dehydrocafestol-2-one (5), 11-O-β-D-glucosyl-(R)-16-desoxy-17-oxocafestol-2-one (6), bengalensol (7), and 11-hydroxycafestol-2-one (8). A UHPLC-MS/MS method was established to quantify 1-8 and monitor their formation during authentic coffee roasting. Concentrations of 1 and the dominant roasting products 4, 5, and 7 ranged from 21.

View Article and Find Full Text PDF

Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!