MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a.

Exp Gerontol

Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Universita' Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy.

Published: August 2014

Mitochondria are intimately involved in the aging process. The decline of autophagic clearance during aging affects the equilibrium between mitochondrial fusion and fission, leading to a build-up of dysfunctional mitochondria, oxidative stress, chronic low-grade inflammation, and increased apoptosis rates, the main hallmarks of aging. Current research suggests that a large number of microRNAs (miRs or miRNAs) are differentially expressed during cell aging. Other lines of evidence indicate that several miRs likely share in "inflamm-aging", an aging-related state characterized by systemic chronic inflammation that in turn provides a biological background favoring susceptibility to age-related diseases and disabilities. Interestingly, miRs can modulate mitochondrial activity, and a discrete miR set has recently been identified in mitochondria of different species and cell types (mitomiRs). Here we show that some mitomiRs (let7b, mir-146a, -133b, -106a, -19b, -20a, -34a, -181a and -221) are also among the miRs primarily involved in cell aging and in inflamm-aging. Of note, Ingenuity Pathway Analysis (IPA) of aging-related mitomiR targets has disclosed a number of resident mitochondrial proteins playing large roles in energy metabolism, mitochondrial transport and apoptosis. Among these, Bcl-2 family members--which are critically involved in maintaining mitochondrial integrity--may play a role in controlling mitochondrial function and dysfunction during cellular aging, also considering that Bcl-2, the master member of the family, is an anti-oxidant and anti-apoptotic factor and regulates mitochondrial fission/fusion and autophagy. This intriguing hypothesis is supported by several observations: i) in endothelial cells undergoing replicative senescence (HUVECs), a well-established model of cell senescence, miR-146a, miR-34a, and miR-181a are over-expressed whereas their target Bcl-2 is down-regulated; ii) IPA of the miR-146a, miR-34a and miR-181a network shows that they are closely linked to each other, to Bcl-2 and to mitochondria; and iii) miR-146a, miR-34a, and miR-181a are involved in important cell functions (growth, proliferation, death, survival, maintenance) and age-related diseases (cancer, skeletal and muscle disorders, neurological, cardiovascular and metabolic diseases). In conclusion several aging-related mitomiRs may play a direct role in controlling mitochondrial function by regulating mitochondrial protein expression. Their modulation could thus mediate the loss of mitochondrial integrity and function in aging cells, inducing or contributing to the inflammatory response and to age-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2014.03.002DOI Listing

Publication Analysis

Top Keywords

age-related diseases
12
mir-146a mir-34a
12
mir-34a mir-181a
12
mitochondrial
10
cell aging
8
involved cell
8
role controlling
8
controlling mitochondrial
8
mitochondrial function
8
aging
7

Similar Publications

Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.

View Article and Find Full Text PDF

Background: Large language models have shown remarkable efficacy in various medical research and clinical applications. However, their skills in medical image recognition and subsequent report generation or question answering (QA) remain limited.

Objective: We aim to finetune a multimodal, transformer-based model for generating medical reports from slit lamp images and develop a QA system using Llama2.

View Article and Find Full Text PDF

Non-canonical roles of CFH in retinal pigment epithelial cells revealed by dysfunctional rare CFH variants.

Stem Cell Reports

December 2024

Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany. Electronic address:

Complement factor H (CFH) common genetic variants have been associated with age-related macular degeneration (AMD). While most previous in vitro RPE studies focused on the common p.His402Tyr CFH variant, we characterized rare CFH variants that are highly penetrant for AMD using induced pluripotent stem-cell-derived retinal pigment epithelium (iPSC-RPE).

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

Introduction: There is a noticeable lack of information on iatrogenic error (IE)-related deaths in the United States. To address this, we conducted a retrospective analysis examining temporal, regional, urbanization, and age-related trends in IE-related mortality from 1999 to 2020.

Methods: Utilizing the Centers for Disease Control and Prevention's Wide-ranging Online Data for Epidemiologic Research database, we identified crude and age-adjusted mortality rates (AAMR) per 100,000 persons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!