Unlabelled: Completion of sequencing of the Plasmodium vivax genome and transcriptome offers the chance to identify antigens among >5000 candidate proteins. To identify those P. vivax proteins that are immunogenic, a total of 152 candidate proteins (160 fragments) were expressed using a wheat germ cell-free system. The results of Western blot analysis showed that 92.5% (148/160) of the targets were expressed, and 96.6% (143/148) were in a soluble form with 67.7% of solubility rate. The proteins were screened by protein arrays with sera from 22 vivax malaria patients and 10 healthy individuals to confirm their immune profile, and 44 (27.5%, 44/160) highly reactive P. vivax antigens were identified. Overall, 5 candidates (rhoptry-associated membrane antigen [RAMA], Pv-fam-a and -b, EXP-1 and hypothetical protein PVX_084775) showed a positive reaction with >80% of patient sera, and 21 candidates with 50% to 80%. More than 23% of the highly immunoreactive proteins were hypothetical proteins, described for the first time in this study. One of the top immunogenic proteins, RAMA, was characterized and confirmed to be a serological marker of recent exposure to P. vivax infection. These novel immunoproteomes should greatly facilitate the identification of promising novel malaria antigens and may warrant further study.

Biological Significance: The establishment of high-throughput cloning and expression systems has permitted the construction of protein arrays for proteome-wide study of Plasmodium vivax. In this study, high-throughput screening assays have been applied to investigate blood stage-specific immune proteomes from P. vivax. We identified 44 antigenic proteins from the 152 putative candidates, more than 23% of which were hypothetical proteins described for the first time in this study. In addition, PvRAMA was characterized further and confirmed to be a serological marker of exposure to infections. The expression of one-third of the selected antigenic genes were shifted between P. vivax and Plasmodium falciparum, suggesting that these genes may represent important factors associated with P. vivax selectivity for young erythrocytes and/or with immune evasion. These novel immune proteomes of the P. vivax blood stage provide a baseline for further prospective serological marker studies in malaria. These methods could be used to determine immunodominant candidate antigens from the P. vivax genome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2014.02.029DOI Listing

Publication Analysis

Top Keywords

vivax
12
plasmodium vivax
12
serological marker
12
proteins
9
vivax infection
8
rhoptry-associated membrane
8
membrane antigen
8
vivax genome
8
candidate proteins
8
protein arrays
8

Similar Publications

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P.

View Article and Find Full Text PDF

Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.

View Article and Find Full Text PDF

The evolution of genetic diversity and population structure of Plasmodium vivax as malaria elimination approaches remains unclear. This study analyzed the genetic variation and molecular epidemiology of P. vivax from Yala Province in southern Thailand, an area in the pre-elimination phase.

View Article and Find Full Text PDF

Worldwide elimination of malaria remains a challenge yet to be accomplished, and the domain of malaria relapse equally remains obtuse. Yet sophisticated cell culture and screening techniques and animal models are being constructed and molecular regulations are discovered in this intriguing discipline. An elaborate understanding of these schemes is mandatory to conceive effective therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!