A simple, rapid, field-portable colorimetric method for the detection of entecavir was proposed based on the color change caused by the aggregation of silver nanoparticles. Neutralization of the electrostatic repulsion from each silver nanoparticle resulted in the aggregation of AgNPs and a consequent color change of AgNPs from yellow to wine-red, which provided a platform for rapid and field-portable colorimetric detection of entecavir. The concentration of entecavir could be determined with naked eye or UV-vis spectrometer. The proposed method can be used to detect entecavir in human urine with a detection limit of 1.51μg mL(-1), within 25min by naked eye observation without the aid of any advanced instrument or complex pretreatment. Results from UV-vis spectra showed that the absorption ratio was linear with the concentration of entecavir in the range of 5.04-25.2μg mL(-1) and 1.01-5.04μg mL(-1) with linear coefficients of 0.9907 and 0.9955, respectively. The selectivity of AgNPs detection system for entecavir is excellent comparing with other ions and analytes. Due to its rapid, visible color changes, and excellent selectivity, the AgNPs synthesized in this study are suitable to be applied to on-site screening of entecavir in human urine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2014.02.009 | DOI Listing |
Biosens Bioelectron
January 2025
Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.
The rapid, simple, and sensitive detection of nucleic acid biomarkers plays a significant role in clinical diagnosis. Herein, we develop a label-free and point-of-care approach for isothermal DNA detection through the trans-cleavage activity of CRISPR-Cas12 and the growth of gold nanomaterials in agarose gel. The presence of the target can activate CRISPR-Cas12a to cleave single-stranded DNA, thus modulating the length and number of DNA sequences that mediate the growth of gold nanoparticles (AuNPs) or gold nanorods (AuNRs).
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.
In this paper, a method of ultrasound-assisted low-pressure closed acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was proposed for trace element quantification in rock samples. By using 1.5 mL of a binary acid mixture of HNO-HF with a ratio of 2:1, rock powder samples of 50 mg were completely decomposed in 12 h at 140 °C after 4 h of ultrasonic treatment with or without pressure relief procedure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!