The purpose of this study was to investigate the in-depth pharmaceutical properties and in vivo behavior of a novel lyophilized rapidly dissolving solid ocular matrix (RD-SOM) as a 'solid eye drop' formulation comprising timolol maleate as the model drug. Thermal and molecular transition analysis displayed similar findings with no incompatibility between formulation components. Porositometric studies confirmed the presence of interconnecting pores across the matrix surface. The HETCAM test indicated an irritation score of 0 with the inference of good tolerability for the RD-SOM in the New Zealand White albino rabbit eye model. Ex vivo permeation across excised rabbit cornea showed an improved steady state drug flux (0.00052 mg cm(-2)min(-1)) and permeability co-efficient (1.7 × 10(-4)cmmin(-1)) for the RD-SOM compared to pure drug and a marketed eye drop preparation. UPLC analysis quantitatively separated timolol maleate and the internal standard (diclofenac sodium) and gamma irradiation was used as a terminal sterilization procedure. In vivo results revealed a peak concentration of timolol was reached at 104.9 min. In the case of a typical eye drop formulation a lower Cmax was obtained (1.97 ug/mL). Level A point-to-point IVIVC plots via the Wagner-Nelson method revealed a satisfactory R(2) value of 0.84. In addition, the biodegradability and ocular compatibility of the RD-SOM was confirmed by histopathological toxicity studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2014.02.032DOI Listing

Publication Analysis

Top Keywords

timolol maleate
12
in-depth pharmaceutical
8
rapidly dissolving
8
dissolving solid
8
solid ocular
8
ocular matrix
8
rabbit eye
8
eye model
8
eye drop
8
eye
5

Similar Publications

Purpose: This study evaluated the efficacy, safety, and tolerability of a single-dose, preservative-free (PF) Dorzolamide/Timolol combination (Twinzol-SDU).

Methods: A 3-month single-arm, multicenter, prospective cohort study was conducted in Egypt between January 2021 and October 2022 on previously diagnosed and controlled patients with ocular hypertension and/or glaucoma. Efficacy was assessed using the change in intraocular pressure (IOP) after 6 and 12 weeks.

View Article and Find Full Text PDF

Purpose: Idiopathic elevated episcleral venous pressure (IEEVP) or Radius-Maumenee syndrome (RMS) is a rare disease without any identified underlying cause. An increasing episcleral venous pressure (EVP) leads to raised intraocular pressure (IOP) and consequently glaucomatous damage of the optic nerve. The objective of this paper is to report this rare condition as well as its clinical management.

View Article and Find Full Text PDF

Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection.

Adv Mater

January 2025

Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.

Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug.

View Article and Find Full Text PDF

A water-soluble drug nanoparticle-loaded in situ gel for enhanced precorneal retention and its transduction mechanism of pharmacodynamic effects.

Int J Pharm

December 2024

Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:

Article Synopsis
  • Timolol maleate (TM) is commonly used to treat glaucoma, but traditional eye drops don't work well due to the eye's barriers.
  • Researchers created a new formulation using nanoparticles (NPs) and an in situ gel (ISG) system to improve drug delivery and retention.
  • The new formulation showed excellent safety, longer duration in the eye, and effectively lowered intraocular pressure for up to 12 hours, providing insights for future glaucoma treatments.
View Article and Find Full Text PDF

Free radical polymerization technique was used to formulate Poloxamer-188 based hydrogels for controlled delivery. A total of seven formulations were formulated with varying concentrations of polymer, monomer ad cross linker. In order to assess the structural properties of the formulated hydrogels, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM), and X-ray diffraction (XRD) were carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!