Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Curcumin, main compound obtained from rizhoma of Curcuma longa, shows antitumoral, antioxidant, anticarcinogenic and gastric protective properties. Recently, it has been demonstrated that curcumin exerts its gastric protective action due to an increase in gastric nitric oxide (NO) levels. However, it is unknown whether these increased NO levels are associated with activation of intracellular signaling pathways. Thus, the purpose of this study was to investigate the role of NO-cGMP-KATP pathway in the gastric protective effect of curcumin during indomethacin-induced gastric injury in the rat. Adult female Wistar rats were gavaged with curcumin (3-300mg/kg, p.o.) or omeprazole (30mg/kg, p.o.) 30min before indomethacin insult (30mg/kg, p.o.). Other groups of rats were administered L-NAME (70mg/kg, i.p.; inhibitor of nitric oxide synthase), ODQ (10mg/kg, i.p.; inhibitor of soluble guanylate cyclase) or glibenclamide (1mg/kg, i.p.; blocker of ATP-sensitive potassium (KATP) channels) 30min before curcumin (30mg/kg, p.o.). 3h after indomethacin administration, rats were sacrificed and gastric injury was evaluated by determining total damaged area. A sample of gastric tissue was harvested and processed to quantify organic nitrite levels. Curcumin significantly protected against indomethacin-induced gastric injury and this effect was comparable to gastroprotective effect by omeprazole. L-NAME, ODQ and glibenclamide significantly prevented the curcumin-mediated gastric protective effect in the indomethacin-induced gastric injury model. Furthermore, curcumin administration induced a significant increase in gastric nitric oxide levels as compared to vehicle administration. Our results show for the first time that curcumin activates NO/cGMP/KATP pathway during its gastro protective action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2014.02.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!