A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Global regulation of transcription by a small RNA: a quantitative view. | LitMetric

Global regulation of transcription by a small RNA: a quantitative view.

Biophys J

Faculty of Medicine, The Hebrew University, Jerusalem, Israel. Electronic address:

Published: March 2014

Small RNAs are integral regulators of bacterial gene expression, the majority of which act posttranscriptionally by basepairing with target mRNAs, altering translation or mRNA stability. 6S RNA, however, is a small RNA that is a transcriptional regulator, acting by binding directly to σ(70)-RNA polymerase (σ(70)-RNAP) and preventing its binding to gene promoters. At the transition from exponential to stationary phase, 6S RNA accumulates and globally downregulates the transcription of hundreds of genes. At the transition from stationary to exponential phase (outgrowth), 6S RNA is released from σ(70)-RNAP, resulting in a fast increase in free σ(70)-RNAP and transcription of many genes. The transition from stationary to exponential phase is sharp, and is thus accessible for experimental study. However, the transition from exponential to stationary phase is gradual and complicated by changes in other factors, making it more difficult to isolate 6S RNA effects experimentally at this transition. Here, we use mathematical modeling and simulation to study the dynamics of 6S RNA-dependent regulation, focusing on transitions in growth mediated by altered nutrient availability. We first show that our model reproduces the sharp increase in σ(70)-RNAP at outgrowth, as well as the behavior of two experimentally tested mutants, thus justifying its use for characterizing the less accessible dynamics of the transition from exponential to stationary phase. We characterize the dynamics of the two transitions for Escherichia coli wild-type, as well as for mutants with various 6S RNA-RNAP affinities, demonstrating that the 6S RNA regulation mechanism is generally robust to a wide range of such mutations, although the level of regulation at single promoters and their resulting expression fold change will be altered with changes in affinity. Our results provide insight into the potential advantage of transcription regulation by 6S RNA, as it enables storage and efficient release of σ(70)-RNAP during transitions in nutrient availability, which is likely to give a competitive advantage to cells encountering diverse environmental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026782PMC
http://dx.doi.org/10.1016/j.bpj.2014.01.025DOI Listing

Publication Analysis

Top Keywords

transition exponential
12
exponential stationary
12
stationary phase
12
rna
8
small rna
8
genes transition
8
transition stationary
8
stationary exponential
8
exponential phase
8
nutrient availability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!