Aims And Background: Ginsenoside Rh2, which exerts the potent anticancer action both in vitro and in vivo, is one of the most well characterized ginsenosides extracted from ginseng. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between ginsenoside Rh2 and phosphoglucose isomerase/autocrine motility factor (PGI/AMF).
Methods: KG1α, a leukemia cell line highly expressing PGI/AMF was assessed by western blot analysis and reverse transcription- PCR (RT-PCR) assay after transfection of a small interfering (si)-RNA to silence PGI/AMF. The effect of PGI/ AMF on proliferation was measured by typan blue assay and antibody array. A cell counting kit (CCK)-8 and flow cytometry (FCM) were adopted to investigate the effects of Rh2 on PGI/AMF. The relationships between PGI/AMF and Rh2 associated with Akt, mTOR, Raptor, Rag were detected by western blot analysis.
Results: KG1α cells expressed PGI/AMF and its down-regulation significantly inhibited proliferation. The antibody array indicated that the probable mechanism was reduced expression of PARP, State1, SAPK/JNK and Erk1/2, while those of PRAS40 and p38 were up-regulated. Silencing of PGI/AMF enhanced the sensibility of KG1α to Rh2 by suppressing the expression of mTOR, Raptor and Akt.
Conclusion: These results suggested that ginsenoside Rh2 suppressed the proliferation of KG1α, the same as down-regulation of PGI/AMF. Down-regulation of PGI/ AMF enhanced the pharmacological effects of ginsenoside Rh2 on KG1α by reducing Akt/mTOR signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7314/apjcp.2014.15.3.1099 | DOI Listing |
Arthritis Res Ther
January 2025
Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, tissue damage, and fibrosis, significantly affecting the quality of life. While there are currently some effective treatments available, they often come with side effects. There is an urgent need to find new treatments that can further improve therapeutic outcomes and reduce side effects.
View Article and Find Full Text PDFNat Prod Res
December 2024
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
T-cell acute lymphoblastic leukaemia (T-ALL) is a common childhood malignant tumour, which has poor prognosis and high recurrence rate. Ginsenoside Rh2 (GRh2), a bioactive ingredient of has significant anti-tumour effect. In this study, we found that gene expressions of Jurkat cells were significantly changed in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signalling pathways after 35 µm GRh2 treatment, involving in JUN, PIEN, AKT3 and MAPK8IP2.
View Article and Find Full Text PDFChin Herb Med
October 2024
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
J Ginseng Res
November 2024
Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, China.
Background: 20(S)-Ginsenoside Rh2 (GRh2) has been extensively studied for multifaceted health benefits. However, the anti-melanoma effect of GRh2 remains poorly understood. Herein, the anti-melanoma effects and underlying mechanisms of GRh2 were investigated.
View Article and Find Full Text PDFAnn Clin Lab Sci
September 2024
Department of Thoracic Surgery, First People's Hospital of Shuangliu District, Chengdu, Sichuan, China.
Objective: To explore the mechanism for mesoporous silica nano-modified ginsenoside Rh2 promoting tumor immunosuppression in lung cancer through PD-1/PD-L1 pathway.
Methods: Firstly, G-Rh2-MSN were prepared and lung cancer A549 cells were cultured. The following groups were set up to analyze whether G-Rh2-MSN down-regulates PD-1/PD-L1 to promote tumor immunity, inhibit activities of lung cancer cells, and promote apoptosis: Model control group, G-Rh2 group, G-Rh2-MSN group, G-Rh2-MSN+PT001 group, G-Rh2-MSN+nivolumab group, G-Rh2-MSN+Durvalumab group, G-Rh2-MSN+atezolizumab group, and G-Rh2-MSN+nivolumab+Durvalumab group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!