Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase.

J Phys Chem B

School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Published: March 2014

Ribonucleotide reductase (RNR) catalyzes the production of deoxyribonucleotides in all cells. In E. coli class Ia RNR, a transient α2β2 complex forms when a ribonucleotide substrate, such as CDP, binds to the α2 subunit. A tyrosyl radical (Y122O•)-diferric cofactor in β2 initiates substrate reduction in α2 via a long-distance, proton-coupled electron transfer (PCET) process. Here, we use reaction-induced FT-IR spectroscopy to describe the α2β2 structural landscapes, which are associated with dATP and hydroxyurea (HU) inhibition. Spectra were acquired after mixing E. coli α2 and β2 with a substrate, CDP, and the allosteric effector, ATP. Isotopic chimeras, (13)Cα2β2 and α2(13)Cβ2, were used to define subunit-specific structural changes. Mixing of α2 and β2 under turnover conditions yielded amide I (C═O) and II (CN/NH) bands, derived from each subunit. The addition of the inhibitor, dATP, resulted in a decreased contribution from amide I bands, attributable to β strands and disordered structures. Significantly, HU-mediated reduction of Y122O• was associated with structural changes in α2, as well as β2. To define the spectral contributions of Y122O•/Y122OH in the quaternary complex, (2)H4 labeling of β2 tyrosines and HU editing were performed. The bands of Y122O•, Y122OH, and D84, a unidentate ligand to the diferric cluster, previously identified in isolated β2, were observed in the α2β2 complex. These spectra also provide evidence for a conformational rearrangement at an additional β2 tyrosine(s), Yx, in the α2β2/CDP/ATP complex. This study illustrates the utility of reaction-induced FT-IR spectroscopy in the study of complex enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp501121dDOI Listing

Publication Analysis

Top Keywords

α2 β2
12
β2
8
ribonucleotide reductase
8
α2β2 complex
8
substrate cdp
8
reaction-induced ft-ir
8
ft-ir spectroscopy
8
structural changes
8
β2 tyrosines
8
α2
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!