Computational design of Tryprostatin-A derivatives as novel αβ-tubulin inhibitors.

J Biomol Struct Dyn

a Department of Chemistry , Isfahan University of Technology, Isfahan 84156-83111 , Iran.

Published: January 2016

AI Article Synopsis

  • The study explores the binding energies, inhibition constants, and binding modes of Tryprostatin-A derivatives using molecular docking with αβ-tubulin, revealing effective binding interactions.
  • New analogues of TPS-A were designed, with one compound (Compound 26) showing the best results, including a strong binding affinity and low inhibition constant.
  • A 25 ns molecular dynamics simulation confirmed the stability of the best-binding compound's orientation and validated the docking study’s predictions, indicating promising candidates for further investigation.

Article Abstract

In the first part of this work, binding energies, inhibition constants and binding modes for a group of previously synthesized Tryprostatin-A (TPS-A) derivatives at the binding site of αβ-tubulin have been comprehensively investigated by molecular docking study. The results represent relatively suitable binding energies for these inhibitors in the αβ-tubulin binding site. In the second part, docking tools were utilized in order to design a group of novel analogues of TPS-A. The results of molecular docking reveal that these newly designed molecules have relatively lower binding energies in the pocket of αβ-tubulin. Compound 26 resulted as the best docked molecule with the highest binding affinity (binding energy of -10.74 kcal/mol and calculated inhibition constant of 13.44 nM). In the last part of this study, three representative complexes were subjected to a 25 ns molecular dynamics simulation to further validate the proposed binding modes and interactions. Analysis of the simulation trajectories showed that the root mean square deviation (RMSD) profile of compound 26 was fairly stable during the whole simulation time, indicating that the orientation generated from the docking study is fairly well preserved during the entire length of the simulation. Moreover, the RMSD profiles of compounds 4 and 31 were probably stable in relation to αβ-tubulin after 7 and 14 ns, and these molecular systems were well behaved thereafter. The results of the current study shed some light on the binding mode of TPS-A analogues for further experimental studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2014.892028DOI Listing

Publication Analysis

Top Keywords

binding energies
12
binding
10
binding modes
8
binding site
8
molecular docking
8
docking study
8
αβ-tubulin
5
computational design
4
design tryprostatin-a
4
tryprostatin-a derivatives
4

Similar Publications

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

LC-MS/MS Analyzing Praziquantel and 4-Hydroxypraziquantel Enantiomers in Black Goat Plasma and Mechanism of Stereoselective Pharmacokinetics.

Biomed Chromatogr

February 2025

Guangdong Provincial key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.

Praziquantel (PZQ) is the most effective treatment for schistosomiasis, commonly administered as a racemic mixture of the two enantiomers. Despite many reports on the pharmacokinetics of PZQ, the stereoselective pharmacokinetics of PZQ and its major metabolite 4-hydroxypraziquantel (4-OH-PZQ) remain poorly understood in goats. In this study, the chiral LC-MS/MS method was further optimized for separating and quantifying PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ and their enantiomers and then applied for the molecular pharmacokinetics of three analytes in black goat plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!