In the last decade, there have been intensive efforts to invent, qualify and use novel biomarkers as a means to improve success rates in drug discovery and development. The biomarkers field is maturing and this article considers whether these research efforts have brought about the expected benefits. The characteristics of a clinically useful biomarker are described and the impact this area of research has had is evaluated by reviewing a few, key examples of emerging biomarkers. There is evidence that the impact has been genuine and is increasing in both the drug and the diagnostic discovery and development processes. Beneficial impact on patient health outcomes seems relatively limited thus far, with the greatest impact in oncology (again, both in terms of novel drugs and in terms of more refined diagnoses and therefore more individualized treatment). However, the momentum of research would indicate that patient benefits are likely to increase substantially and to broaden across multiple therapeutic areas. Even though this research was originally driven by a desire to improve the drug discovery and development process, and was therefore funded with this aim in mind, it seems likely that the largest impact may actually come from more refined diagnosis. Refined diagnosis will facilitate both better allocation of healthcare resources and the use of treatment regimens which are optimized for the individual patient. This article also briefly reviews emerging technological approaches and how they relate to the challenges inherent in biomarker discovery and validation, and discusses the role of public/private partnerships in innovative biomarker research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/joim.12234 | DOI Listing |
J Clin Oncol
January 2025
Center for Cell Engineering, Sloan Kettering Institute, New York, NY.
Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.
View Article and Find Full Text PDFScience
January 2025
Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
The origins and prehistory of domestic sheep () are incompletely understood; to address this, we generated data from 118 ancient genomes spanning 12,000 years sampled from across Eurasia. Genomes from Central Türkiye ~8000 BCE are genetically proximal to the domestic origins of sheep but do not fully explain the ancestry of later populations, suggesting a mosaic of wild ancestries. Genomic signatures indicate selection by ancient herders for pigmentation patterns, hornedness, and growth rate.
View Article and Find Full Text PDFScience
January 2025
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Studying the functional consequences of structural variants (SVs) in mammalian genomes is challenging because (i) SVs arise much less commonly than single-nucleotide variants or small indels and (ii) methods to generate, map, and characterize SVs in model systems are underdeveloped. To address these challenges, we developed Genome-Shuffle-seq, a method that enables the multiplex generation and mapping of thousands of SVs (deletions, inversions, translocations, and extrachromosomal circles) throughout mammalian genomes. We also demonstrate the co-capture of SV identity with single-cell transcriptomes, facilitating the measurement of SV impact on gene expression.
View Article and Find Full Text PDFPLoS One
January 2025
Shanghai Xinhao Information Technology Co., Ltd., Shanghai, China.
Machine learning techniques and computer-aided methods are now widely used in the pre-discovery tasks of drug discovery, effectively improving the efficiency of drug development and reducing the workload and cost. In this study, we used multi-source heterogeneous network information to build a network model, learn the network topology through multiple network diffusion algorithms, and obtain compressed low-dimensional feature vectors for predicting drug-target interactions (DTIs). We applied the metropolis-hasting random walk (MHRW) algorithm to improve the performance of the random walk with restart (RWR) algorithm, forming the basis by which the self-loop probability of the current node is removed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!