Disuse atrophy of skeletal muscle is a common clinical problem and its exact mechanisms have not been fully understood. Previous studies suggested that disuse muscle atrophy is realized through the activation of one or more cell signaling pathways, but studies have shown that disuse atrophy is the activation of the ubiquitin-proteasome caused extensive decomposition of the protein. The present researches for disuse atrophy mainly focus on regulatory role in the upstream signaling molecules MuRF1 and Atroginl/MAFbx by NF-kappaB, IGF-1/PI3K/Akt, TGF-beta/Smad and MAPK signal pathway and a plurality of signal pathway activation or inhibition and interaction,and then through the ubiquitin--proteasome to influence the metabolism of protein. But regulation of expression of MuRF1 and Atroginl/MAFbxs still to be studied. Participate in disuse atrophy also needs to be further studied with atrophy confirmation and functional gene verification. The paper summarized recent original articles about the researches of skeletal muscle disuse atrophy and reviewed the various signal pathways and related u-biquitin-proteasome protein metabolism of disuse muscle atrophy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

disuse atrophy
20
skeletal muscle
12
signaling pathways
8
protein metabolism
8
disuse
8
muscle disuse
8
atrophy
8
disuse muscle
8
muscle atrophy
8
signal pathway
8

Similar Publications

We sought to examine how resistance training (RT) status in young healthy individuals, either well resistance trained (T, n=10) or untrained (UT, n=11), affected molecular markers with leg immobilization followed by recovery RT. All participants underwent two weeks of left leg immobilization via a locking leg brace. Afterwards, all participants underwent eight weeks (3 d/week) of knee extensor focused progressive RT.

View Article and Find Full Text PDF

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Child Neurology: Severe -Related Congenital Muscular Dystrophy With Rapidly Progressive Encephalopathy Leading to Infantile Death.

Neurology

February 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.

Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.

View Article and Find Full Text PDF

From molecular to physical function: The aging trajectory.

Curr Res Physiol

December 2024

Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.

Aging is accompanied by a decline in muscle mass, strength, and physical function, a condition known as sarcopenia. Muscle disuse attributed to decreased physical activity, hospitalization, or illness (e.g.

View Article and Find Full Text PDF

For individuals with Duchenne or Becker muscular dystrophy (DMD and BMD, respectively), transitioning to adulthood presents significant challenges. Although considerable attention has been given to facilitating medical transitions due to the complexity of these conditions, less focus has been placed on other aspects of the transition, such as achieving independence. This study assessed the transition needs of people with DMD or BMD, exploring various domains including health, education, employment, living arrangements, transportation, daily activities, and independent personal life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!