Aim: Evaluation of influence of triterpenoid miliacin on the development of experimental salmonellosis infection.

Materials And Methods: Studies were carried out in 330 male mice (CBAxC57Bl6)F1. Miliacin was administered 3 times intraperitoneally with the interval of 3 days between administrations at a single dose of 2 mg/kg. The animals were infected intraperitoneally by hospital origin Salmonella enteritidis strain (2x10(6) bacteria per mice). 4 groups of mice were used: I - intact; II - infected; III - infected after administering solvent for miliacin 3 times (tween 21 at final concentration of 1.6x 10(-7) mol/kg); IV - infected after administration ofmiliacin.

Results: Miliacin reduced the mortality of mice compared with groups II and III. Microbial contamination of mice spleen in group IV was significantly lower compared with group II at all the periods of the study, and liver - at days 10 and 15. Triterpenoid weakened cell depletion of bone marrow, thymus and limited hyperplasia of spleen compared with animals of groups II and III. Its protective effect did not correlate with increase of antibody titers.

Conclusion: Miliacin weakens the severity of salmonellosis infection course.

Download full-text PDF

Source

Publication Analysis

Top Keywords

experimental salmonellosis
8
groups iii
8
miliacin
5
mice
5
[protective miliacin
4
miliacin experimental
4
salmonellosis infection]
4
infection] aim
4
aim evaluation
4
evaluation influence
4

Similar Publications

Newly identified c-di-GMP pathway putative EAL domain gene STM0343 regulates stress resistance and virulence in Salmonella enterica serovar Typhimurium.

Vet Res

January 2025

National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.

S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.

View Article and Find Full Text PDF

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.

View Article and Find Full Text PDF

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

Background: Salmonella enterica serovar Enteritidis (S. Enteritidis) is a global foodborne pathogen that poses a significant threat to human health, with poultry being the primary reservoir host. Therefore, addressing S.

View Article and Find Full Text PDF

MurB or UDP-N-acetylenolpyruvoylglucosamine reductase (EC 1.3.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!