Can listeners recognize the individual characteristics of unfamiliar performers playing two different musical pieces on the harpsichord? Six professional harpsichordists, three prize-winners and three non prize-winners, made two recordings of two pieces from the Baroque period (a variation on a Partita by Frescobaldi and a rondo by François Couperin) on an instrument equipped with a MIDI console. Short (8 to 15 s) excerpts from these 24 recordings were subsequently used in a sorting task in which 20 musicians and 20 non-musicians, balanced for gender, listened to these excerpts and grouped together those that they thought had been played by the same performer. Twenty-six participants, including 17 musicians and nine non-musicians, performed significantly better than chance, demonstrating that the excerpts contained sufficient information to enable listeners to recognize the individual characteristics of the performers. The grouping accuracy of musicians was significantly higher than that observed for non-musicians. No significant difference in grouping accuracy was found between prize-winning performers and non-winners or between genders. However, the grouping accuracy was significantly higher for the rondo than for the variation, suggesting that the features of the two pieces differed in a way that affected the listeners' ability to sort them accurately. Furthermore, only musicians performed above chance level when matching variation excerpts with rondo excerpts, suggesting that accurately assigning recordings of different pieces to their performer may require musical training. Comparisons between the MIDI performance data and the results of the sorting task revealed that tempo and, to a lesser extent, note onset asynchrony were the most important predictors of the perceived distance between performers, and that listeners appeared to rely mostly on a holistic percept of the excerpts rather than on a comparison of note-by-note expressive patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932517 | PMC |
http://dx.doi.org/10.3389/fpsyg.2014.00141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!