STIM1-mediated bidirectional regulation of Ca(2+) entry through voltage-gated calcium channels (VGCC) and calcium-release activated channels (CRAC).

Front Cell Neurosci

Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Inflammation Research Network, University of Calgary Calgary, AB, Canada.

Published: March 2014

The spatial and temporal regulation of cellular calcium signals is modulated via two main Ca(2+) entry routes. Voltage-gated Ca(2+) channels (VGCC) and Ca(2+)-release activated channels (CRAC) enable Ca(2+) flow into electrically excitable and non-excitable cells, respectively. VGCC are well characterized transducers of electrical activity that allow Ca(2+) signaling into the cell in response to action potentials or subthreshold depolarizing stimuli. The identification of STromal Interaction Molecule (STIM) and Orai proteins has provided significant insights into the understanding of CRAC function and regulation. This review will summarize the current state of knowledge of STIM-Orai interaction and their contribution to cellular Ca(2+) handling mechanisms. We will then discuss the bidirectional actions of STIM1 on VGCC and CRAC. In contrast to the stimulatory role of STIM1 on Orai channel activity that facilitates Ca(2+) entry, recent reports indicated the ability of STIM1 to suppress VGCC activity. This new concept changes our traditional understanding of Ca(2+) handling mechanisms and highlights the existence of dynamically regulated signaling complexes of surface expressed ion channels and intracellular store membrane-embedded Ca(2+) sensors. Overall, STIM1 is emerging as a new class of regulatory proteins that fine-tunes Ca(2+) entry in response to endoplasmic/sarcoplasmic reticulum stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932444PMC
http://dx.doi.org/10.3389/fncel.2014.00043DOI Listing

Publication Analysis

Top Keywords

ca2+ entry
16
ca2+
10
channels vgcc
8
activated channels
8
channels crac
8
ca2+ handling
8
handling mechanisms
8
channels
5
vgcc
5
stim1-mediated bidirectional
4

Similar Publications

Intracellular Membrane Contact Sites in Skeletal Muscle Cells.

Membranes (Basel)

January 2025

Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.

Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Background: Dystonia is a common neurological hyperkinetic movement disorder that can be caused by mutations in anoctamin 3 (ANO3, TMEM16C), a phospholipid scramblase and ion channel. We previously reported patients that were heterozygous for the ANO3 variants S651N, V561L, A599D and S651N, which cause dystonia by unknown mechanisms.

Methods: We applied electrophysiology, Ca measurements and cell biological methods to analyze the molecular mechanisms that lead to aberrant intracellular Ca signals and defective activation of K channels in patients heterozygous for the ANO3 variants.

View Article and Find Full Text PDF

Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.

View Article and Find Full Text PDF

Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.

Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!