Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional hierarchical flower-like graphene oxide-hydroxyapatite (GO-HAp) nanocomposites were synthesized by a simple biomimetic method in a modified simulated body fluid (mSBF). The obtained GO-HAp nanocomposites were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N2 adsorption-desorption analysis. The formation mechanism was proposed and the prepared GO-HAp was applied as an adsorbent to remove strontium from large volumes of aqueous solutions. A maximum adsorption capacity of 702.18 mg g(-1) was achieved on GO-HAp, almost two fold higher than that of bare HAp and nine fold higher than that of GO. The effects of pH, adsorbent content, contact time and Sr(2+) initial concentrations on Sr(2+) removal from solution by GO-HAp were systematically investigated, and the results indicated that the removal of Sr(2+) by GO-HAp was weakly dependent on solution pH. The results herein reveal that the GO-HAp nanocomposites had exceptional potential as a suitable material for preconcentration and solidification of radiostrontium from large volumes of aqueous solutions in nuclear waste management and radiostrontium pollution cleanup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt53591f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!