A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites. | LitMetric

Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites.

Dalton Trans

School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, P. R. China.

Published: May 2014

Three-dimensional hierarchical flower-like graphene oxide-hydroxyapatite (GO-HAp) nanocomposites were synthesized by a simple biomimetic method in a modified simulated body fluid (mSBF). The obtained GO-HAp nanocomposites were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N2 adsorption-desorption analysis. The formation mechanism was proposed and the prepared GO-HAp was applied as an adsorbent to remove strontium from large volumes of aqueous solutions. A maximum adsorption capacity of 702.18 mg g(-1) was achieved on GO-HAp, almost two fold higher than that of bare HAp and nine fold higher than that of GO. The effects of pH, adsorbent content, contact time and Sr(2+) initial concentrations on Sr(2+) removal from solution by GO-HAp were systematically investigated, and the results indicated that the removal of Sr(2+) by GO-HAp was weakly dependent on solution pH. The results herein reveal that the GO-HAp nanocomposites had exceptional potential as a suitable material for preconcentration and solidification of radiostrontium from large volumes of aqueous solutions in nuclear waste management and radiostrontium pollution cleanup.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt53591fDOI Listing

Publication Analysis

Top Keywords

aqueous solutions
12
go-hap nanocomposites
12
graphene oxide-hydroxyapatite
8
electron microscopy
8
large volumes
8
volumes aqueous
8
fold higher
8
go-hap
7
efficient capture
4
capture strontium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!