The aim of our study was to investigate the effect of taurine on the relationship between nitric oxide (NO), asymmetric dimethylarginine (ADMA) and homocysteine (Hcy) in endotoxin-induced human umblical vein endothelial cell (HUVEC) cultures. For this reason, four groups were formed (n=12). Control group consists of HUVEC cultures without any treatment. Lipopolysaccharide (LPS) and LPS+taurine groups were treated with 10 μg/mL endotoxin, 5 μg/mL taurine and endotoxin+taurine (same doses), respectively. Nitrite/nitrate (NOx), ADMA and Hcy levels were measured. There was a significant increase of NOx, ADMA and Hcy in endotoxemia (p<0.05). Taurine treatment elevated NOx levels significantly (p<0.01) in taurine and LPS + taurine group compared to control group, while it reduced NOx levels compared to LPS group. In contrast, taurine decreased ADMA levels to the control level both in taurine and taurine+LPS group compared to LPS. Hcy levels increased significantly compared to taurine group (p<0.05) and did not change compared to LPS group. Taurine was effective on ADMA-NO relationship whereas no beneficial effect was observed in Hcy levels (p<0.05).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-014-9868-3DOI Listing

Publication Analysis

Top Keywords

huvec cultures
12
taurine relationship
8
adma homocysteine
8
nox adma
8
adma hcy
8
adma
4
relationship adma
4
homocysteine endotoxin-mediated
4
endotoxin-mediated inflammation
4
inflammation huvec
4

Similar Publications

This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.

View Article and Find Full Text PDF

Protection of liver sinusoidal endothelial cells using different preservation solutions.

Vasc Biol

January 2025

J van Buul, Medical Biochemistry, Amsterdam UMC Locatie AMC, Amsterdam, 1105 AZ, Netherlands.

Objective: Donor liver preservation methods and solutions have evolved over the last years. Liver sinusoidal endothelial cell (LSEC) barrier function and integrity during preservation is crucial for outcomes of liver transplantation. Therefore, the present study aimed to determine optimal preservation of LSEC barrier function and integrity, using different preservation solutions.

View Article and Find Full Text PDF

Purpose: Chronic inflammation plays an important role in the pathogenesis of choroidal neovascularization (CNV). This study aimed to investigate the effect of the CHF5074, a γ-secretase inhibitor, on angiogenesis in a laser-induced CNV model and elucidate its possible molecular mechanism.

Methods: Male C57/BL6J mice aged between 6 to 8 weeks were employed to set up a laser-induced model of CNV.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

VAMP8 as a biomarker and potential therapeutic target for endothelial cell dysfunction in atherosclerosis.

Gene

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China. Electronic address:

Background: Endothelial cell dysfunction has a critical role in the pathophysiology of atherosclerosis. This study aims to uncover pivotal genes and pathways linked to endothelial cell dysfunction in atherosclerosis, as well as to ascertain the assumed causal effects and potential mechanisms.

Methods: Datasets relevant to endothelial cell dysfunction in atherosclerosis were collected and divided into training and validation sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!