Organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BChE) can be used to confirm exposure in humans. A highly accurate method to detect G- and V-series OPNA adducts to BChE in 75 μL of filtered blood, serum, or plasma has been developed using immunomagnetic separation (IMS) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The reported IMS method captures > 88 % of the BChE in a specimen and corrects for matrix effects on peptide calibrators. The optimized method has been used to quantify baseline BChE levels (unadducted and OPNA-adducted) in a matched-set of serum, plasma, and whole blood (later processed in-house for plasma content) from 192 unexposed individuals to determine the interchangeability of the tested matrices. The results of these measurements demonstrate the ability to accurately measure BChE regardless of the format of the blood specimen received. Criteria for accepting or denying specimens were established through a series of sample stability and processing experiments. The results of these efforts are an optimized and rugged method that is transferrable to other laboratories and an increased understanding of the BChE biomarker in matrix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836380 | PMC |
http://dx.doi.org/10.1007/s00216-014-7718-7 | DOI Listing |
Front Neurosci
December 2024
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs.
View Article and Find Full Text PDFExp Neurol
December 2024
Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, United States of America. Electronic address:
Exposure to organophosphorus nerve agents irreversibly inhibits acetylcholinesterase and may lead to cholinergic crisis and seizures. Although benzodiazepines are the standard of care after nerve agent-induced status epilepticus, when treatment is delayed for up to 30 min or more, refractory status epilepticus can develop. Adult male rodents are often utilized for evaluation of therapeutic efficacy against nerve agent exposure.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
Organophosphorus substances are employed in several industrial segments, albeit they may feature high toxicity levels depending on their structures. Based on previous extensive investigations of structure-reactivity patterns, researchers have been working on the development of catalysts as a means to detoxify phosphorus(V) organic compounds rapidly and safely through specific reaction pathways. This highlight reviews some recent advances in the utilization of catalytic systems for the decomposition of organophosphorus(V) compounds, in most cases using simulants of nerve agents.
View Article and Find Full Text PDFACS Sens
November 2024
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
Nerve agents are toxic organophosphorus chemicals and acetylcholinesterase inhibitors that have been used in terrorist acts. Because they exhibit fatal toxic effects in small amounts, technology is required to detect and identify them early. Research for nerve agent detection using structural simulants of real agents may not function properly for real agents depending on the selectivity of the sensor.
View Article and Find Full Text PDFACS Omega
October 2024
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Metal-organic frameworks have been utilized as heterogeneous catalysts for the degradation of chemical warfare agents, typically organophosphorous nerve agents. Vibrational spectroscopy techniques coupled with nuclear magnetic resonance (NMR) were utilized to study the adsorption and degradation of dimethyl phosphite (DMP), a simulant molecule of the organophosphorus nerve agent Soman (GD), by Zr- and Hf-UiO-66 as a function of particle size, defect type, and defect density. Defective Zr- and Hf-UiO-66 have been synthesized via a modulated synthesis protocol to engineer missing linker and missing cluster defects into the crystal structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!