Quinolines in clothing textiles--a source of human exposure and wastewater pollution?

Anal Bioanal Chem

Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden.

Published: May 2014

A production process in which the use of various types of chemicals seems to be ubiquitous makes the textile industry a growing problem regarding both public health as well as the environment. Among several substances used at each stage, the present study focuses on the quinolines, a class of compounds involved in the manufacture of dyes, some of which are skin irritants and/or classified as probable human carcinogens. A method was developed for the determination of quinoline derivatives in textile materials comprising ultrasound-assisted solvent extraction, solid phase extraction cleanup, and final analysis by gas chromatography/mass spectrometry. Quinoline and ten quinoline derivatives were determined in 31 textile samples. The clothing samples, diverse in color, material, brand, country of manufacture, and price, and intended for a broad market, were purchased from different shops in Stockholm, Sweden. Quinoline, a possible human carcinogen, was found to be the most abundant compound present in almost all of the samples investigated, reaching a level of 1.9 mg in a single garment, and it was found that quinoline and its derivatives were mainly correlated to polyester material. This study points out the importance of screening textiles with nontarget analysis to investigate the presence of chemicals in an unbiased manner. Focus should be primarily on clothing worn close to the body.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-7688-9DOI Listing

Publication Analysis

Top Keywords

quinoline derivatives
12
quinoline
5
quinolines clothing
4
clothing textiles--a
4
textiles--a source
4
source human
4
human exposure
4
exposure wastewater
4
wastewater pollution?
4
pollution? production
4

Similar Publications

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

Can α-Mangostin and Photodynamic Therapy Support Ciprofloxacin in the Inactivation of Uropathogenic and Strains?

Int J Mol Sci

December 2024

Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.

Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .

View Article and Find Full Text PDF

Tryptophan (TRP) is an essential amino acid crucial for the production of many bioactive compounds. Disturbances in TRP metabolism have been revealed in various diseases, many of which are closely related to the immune system. In recent years, we have focused on finding blood-based biomarkers of successful immunotherapy in cancer.

View Article and Find Full Text PDF

Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against : Design, Synthesis, and In Vitro and In Silico Insights.

Molecules

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!