Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source.

Stem Cells Transl Med

Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Cellectis Bioresearch, Gothenburg, Sweden; Division of Biotechnology/IFM, Linköping University, Linköping, Sweden; Cell Therapy Catapult Limited, London, United Kingdom.

Published: April 2014

Human induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine; however, clinical applications of iPSCs are restricted because of undesired genomic modifications associated with most reprogramming protocols. We show, for the first time, that chondrocytes from autologous chondrocyte implantation (ACI) donors can be efficiently reprogrammed into iPSCs using a nonintegrating method based on mRNA delivery, resulting in footprint-free iPSCs (no genome-sequence modifications), devoid of viral factors or remaining reprogramming molecules. The search for universal allogeneic cell sources for the ACI regenerative treatment has been difficult because making chondrocytes with high matrix-forming capacity from pluripotent human embryonic stem cells has proven challenging and human mesenchymal stem cells have a predisposition to form hypertrophic cartilage and bone. We show that chondrocyte-derived iPSCs can be redifferentiated in vitro into cartilage matrix-producing cells better than fibroblast-derived iPSCs and on par with the donor chondrocytes, suggesting the existence of a differentiation bias toward the somatic cell origin and making chondrocyte-derived iPSCs a promising candidate universal cell source for ACI. Whole-genome single nucleotide polymorphism array and karyotyping were used to verify the genomic integrity and stability of the established iPSC lines. Our results suggest that RNA-based technology eliminates the risk of genomic integrations or aberrations, an important step toward a clinical-grade cell source for regenerative medicine such as treatment of cartilage defects and osteoarthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973712PMC
http://dx.doi.org/10.5966/sctm.2013-0138DOI Listing

Publication Analysis

Top Keywords

stem cells
16
cell source
12
human induced
8
induced pluripotent
8
pluripotent stem
8
step clinical-grade
8
clinical-grade cell
8
cell sources
8
regenerative medicine
8
chondrocyte-derived ipscs
8

Similar Publications

Laryngocutaneous fistula is one of the most important complications encountered after larynx surgery. Stem cell therapy is a promising treatment approach for the future, both without the need for surgical methods and by assisting surgical methods to close the fistula. 30 female Downey Sprague rats were divided into 5 separate groups and pharyngocutaneous fistula was created.

View Article and Find Full Text PDF

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.

View Article and Find Full Text PDF

Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.

View Article and Find Full Text PDF

There is increasing pressure for researchers to reduce their reliance on animals, particularly in early-stage research. The main reason for that change arises from the different biological behavior of humans that leads to frequent failure of translating data from bench to bed. The advent of organoid technology ten years ago, along with the feasibility of obtaining brain organoids in most laboratories, has created considerable expectations not exempting frustration.

View Article and Find Full Text PDF

The integral role of in brain function: from neurogenesis to synaptic plasticity and social behavior.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!