Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The focus of this article was to explore the translocation of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of (109)Cd, (57)Co, and (65)Zn labeled by roots, and the redistribution of (109)Cd, (65)Zn, (57)Co, (63)Ni, and (134)Cs using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that (109)Cd added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, (57)Co was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. (65)Zn was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested ((109)Cd, (57)Co, (65)Zn, (63)Ni, (134)Cs) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for (63)Ni and (65)Zn, while a relatively high percentage of (57)Co was finally found in the roots. (134)Cs was roughly in the middle of them. The transport of (109)Cd differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-2636-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!